Home > Statistical Methods calculators > Mean deviation about mean for grouped data example

Mean deviation about mean example (X & Frequency) for grouped data ( Enter your problem )
  1. Mean deviation Introduction
  2. Mean deviation about mean example (Class & Frequency)
  3. Mean deviation about mean example (X & Frequency)
  4. Mean deviation about median example (Class & Frequency)
  5. Mean deviation about median example (X & Frequency)
  6. Mean deviation about mode example (Class & Frequency)
  7. Mean deviation about mode example (X & Frequency)

2. Mean deviation about mean example (Class & Frequency)
(Previous example)
4. Mean deviation about median example (Class & Frequency)
(Next example)

3. Mean deviation about mean example (X & Frequency)





Formula
1. Mean deviation of Mean `delta bar x = (sum f*|x - bar x|)/n`
2. Mean deviation of Mean `delta bar x = (sum f*|x - M|)/n`
3. Mean deviation of Mode `delta bar x = (sum f*|x - Z|)/n`

Examples
1. Calculate Mean deviation about mean from the following grouped data
XFrequency
103
1112
1218
1312
143


Solution:
`x`
`(1)`
`f`
`(2)`
`f*x`
`(3)=(2)xx(1)`
`|x-bar x|=|x-12|`
`(4)`
`f*|x-bar x|`
`(5)=(2)xx(4)`
103 30 `30=3xx10`
`(3)=(2)xx(1)`
 2 `|x - 12|=|10-12|=2` 6 `6=3xx2`
`(5)=(2)xx(4)`
1112 132 `132=12xx11`
`(3)=(2)xx(1)`
 1 `|x - 12|=|11-12|=1` 12 `12=12xx1`
`(5)=(2)xx(4)`
1218 216 `216=18xx12`
`(3)=(2)xx(1)`
 0 `|x - 12|=|12-12|=0` 0 `0=18xx0`
`(5)=(2)xx(4)`
1312 156 `156=12xx13`
`(3)=(2)xx(1)`
 1 `|x - 12|=|13-12|=1` 12 `12=12xx1`
`(5)=(2)xx(4)`
143 42 `42=3xx14`
`(3)=(2)xx(1)`
 2 `|x - 12|=|14-12|=2` 6 `6=3xx2`
`(5)=(2)xx(4)`
---------------
--`n=48``sum f*x=576`--`sum f*|x-bar x|=36`


Mean `bar x=(sum f x)/n`

`=576/48`

`=12`

Mean deviation of Mean
`delta bar x = (sum f*|x - bar x|)/n`

`delta bar x = 36/48`

`delta bar x = 0.75`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=0.75/12`

`=0.0625`
2. Calculate Mean deviation about mean from the following grouped data
XFrequency
01
15
210
36
43


Solution:
`x`
`(1)`
`f`
`(2)`
`f*x`
`(3)=(2)xx(1)`
`|x-bar x|=|x-2.2|`
`(4)`
`f*|x-bar x|`
`(5)=(2)xx(4)`
0102.22.2
1551.26
210200.22
36180.84.8
43121.85.4
---------------
--`n=25``sum f*x=55`--`sum f*|x-bar x|=20.4`


Mean `bar x=(sum f x)/n`

`=55/25`

`=2.2`

Mean deviation of Mean
`delta bar x = (sum f*|x - bar x|)/n`

`delta bar x = 20.4/25`

`delta bar x = 0.816`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=0.816/2.2`

`=0.3709`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Mean deviation about mean example (Class & Frequency)
(Previous example)
4. Mean deviation about median example (Class & Frequency)
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.