Home > Statistical Methods calculators > Mean deviation about mean for grouped data example

Mean deviation about mode example (Class & Frequency) for grouped data ( Enter your problem )
  1. Mean deviation Introduction
  2. Mean deviation about mean example (Class & Frequency)
  3. Mean deviation about mean example (X & Frequency)
  4. Mean deviation about median example (Class & Frequency)
  5. Mean deviation about median example (X & Frequency)
  6. Mean deviation about mode example (Class & Frequency)
  7. Mean deviation about mode example (X & Frequency)

5. Mean deviation about median example (X & Frequency)
(Previous example)
7. Mean deviation about mode example (X & Frequency)
(Next example)

6. Mean deviation about mode example (Class & Frequency)





1. Calculate Mean deviation about mode from the following grouped data
Class-XFrequency
2 - 43
4 - 64
6 - 82
8 - 101


Solution:
Class
`(1)`
`f`
`(2)`
Mid value (`x`)
`(3)`
`|x-Z|=|x-4.6667|`
`(4)`
`f*|x-Z|`
`(5)=(2)xx(4)`
2 - 4331.66675
4 - 6450.33331.3333
6 - 8272.33334.6667
8 - 10194.33334.3333
---------------
--`n=10`----`sum f*|x-Z|=15.3333`


To find Mode Class
Here, maximum frequency is `4`.

`:.` The mode class is `4 - 6`.

`:. L = `lower boundary point of mode class `=4`

`:. f_1 = ` frequency of the mode class `=4`

`:. f_0 = ` frequency of the preceding class `=3`

`:. f_2 = ` frequency of the succedding class `=2`

`:. c = ` class length of mode class `=2`

`Z = L + ((f_1 - f_0) / (2*f_1 - f_0 - f_2)) * c`

`=4 + ((4 - 3)/(2*4 - 3 - 2)) * 2`

`=4 + (1/3) * 2`

`=4 + 0.6667`

`=4.6667`

Mean deviation of Mode
`delta bar x = (sum f*|x - Z|)/n`

`delta bar x = 15.3333/10`

`delta bar x = 1.5333`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=1.5333/4.6667`

`=0.3286`


2. Calculate Mean deviation about mode from the following grouped data
Class-XFrequency
10 - 2015
20 - 3025
30 - 4020
40 - 5012
50 - 608
60 - 705
70 - 803


Solution:
Class
`(1)`
`f`
`(2)`
Mid value (`x`)
`(3)`
`|x-Z|=|x-26.6667|`
`(4)`
`f*|x-Z|`
`(5)=(2)xx(4)`
10 - 20151511.6667175
20 - 3025251.666741.6667
30 - 4020358.3333166.6667
40 - 50124518.3333220
50 - 6085528.3333226.6667
60 - 7056538.3333191.6667
70 - 8037548.3333145
---------------
--`n=88`----`sum f*|x-Z|=1166.6667`


To find Mode Class
Here, maximum frequency is `25`.

`:.` The mode class is `20 - 30`.

`:. L = `lower boundary point of mode class `=20`

`:. f_1 = ` frequency of the mode class `=25`

`:. f_0 = ` frequency of the preceding class `=15`

`:. f_2 = ` frequency of the succedding class `=20`

`:. c = ` class length of mode class `=10`

`Z = L + ((f_1 - f_0) / (2*f_1 - f_0 - f_2)) * c`

`=20 + ((25 - 15)/(2*25 - 15 - 20)) * 10`

`=20 + (10/15) * 10`

`=20 + 6.6667`

`=26.6667`

Mean deviation of Mode
`delta bar x = (sum f*|x - Z|)/n`

`delta bar x = 1166.6667/88`

`delta bar x = 13.2576`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=13.2576/26.6667`

`=0.4972`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



5. Mean deviation about median example (X & Frequency)
(Previous example)
7. Mean deviation about mode example (X & Frequency)
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.