Home > Statistical Methods calculators > Mean deviation about mean for ungrouped data example

Mean deviation about mean, median, mode example for ungrouped data ( Enter your problem )
  1. Mean deviation Introduction
  2. Mean deviation about mean example
  3. Mean deviation about median example
  4. Mean deviation about mode example
  5. Mean deviation about mean, median, mode example

4. Mean deviation about mode example
(Previous example)

5. Mean deviation about mean, median, mode example





1. Find Mean deviation about MEAN;MEDIAN from the following data
`3,23,13,11,15,5,4,2`


Solution:
Mean `bar x=(sum x)/n`

`=(3+23+13+11+15+5+4+2)/8`

`=76/8`

`=9.5`

Median :
Observations in the ascending order are :
`2,3,4,5,11,13,15,23`

Here, `n=8` is even.

`M=(text{Value of } (n/2)^(th) text{ observation} + text{Value of } (n/2 + 1)^(th) text{ observation})/2`

`=(text{Value of } (8/2)^(th) text{ observation} + text{Value of } (8/2 + 1)^(th) text{ observation})/2`

`=(text{Value of }4^(th) text{ observation} + text{Value of }5^(th) text{ observation})/2`

`=(5 + 11)/2`

`=8`

`x``|x - bar x| = |x - 9.5|``|x - M| = |x - 8|`
36.55
2313.515
133.55
111.53
155.57
54.53
45.54
27.56
---------
764848


Mean deviation of Mean
`delta bar x = (sum |x - bar x|)/n`

`delta bar x = 48/8`

`delta bar x = 6`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=6/9.5`

`=0.6316`


Mean deviation of Median
`delta bar x = (sum |x - M|)/n`

`delta bar x = 48/8`

`delta bar x = 6`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=6/8`

`=0.75`
2. Find Mean deviation about MEAN;MEDIAN;MODE from the following data
`69,66,67,69,64,63,65,68,72`


Solution:
Mean `bar x=(sum x)/n`

`=(69+66+67+69+64+63+65+68+72)/9`

`=603/9`

`=67`

Median :
Observations in the ascending order are :
`63,64,65,66,67,68,69,69,72`

Here, `n=9` is odd.

`M=` value of `((n+1)/2)^(th)` observation

`=` value of `((9+1)/2)^(th)` observation

`=` value of `5^(th)` observation

`=67`

Mode :
In the given data, the observation `69` occurs maximum number of times (`2`)

`:. Z = 69`

`x``|x - bar x| = |x - 67|``|x - M| = |x - 67|``|x - Z| = |x - 69|`
69220
66113
67002
69220
64335
63446
65224
68111
72553
------------
603202024


Mean deviation of Mean
`delta bar x = (sum |x - bar x|)/n`

`delta bar x = 20/9`

`delta bar x = 2.2222`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=2.2222/67`

`=0.0332`


Mean deviation of Median
`delta bar x = (sum |x - M|)/n`

`delta bar x = 20/9`

`delta bar x = 2.2222`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=2.2222/67`

`=0.0332`


Mean deviation of Mode
`delta bar x = (sum |x - Z|)/n`

`delta bar x = 24/9`

`delta bar x = 2.6667`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=2.6667/69`

`=0.0386`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Mean deviation about mode example
(Previous example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.