1. Find Mean deviation about MEAN;MEDIAN from the following data
`3,23,13,11,15,5,4,2`Solution:Mean `bar x=(sum x)/n`
`=(3+23+13+11+15+5+4+2)/8`
`=76/8`
`=9.5`
Median :Observations in the ascending order are :
`2,3,4,5,11,13,15,23`
Here, `n=8` is even.
`M=(text{Value of } (n/2)^(th) text{ observation} + text{Value of } (n/2 + 1)^(th) text{ observation})/2`
`=(text{Value of } (8/2)^(th) text{ observation} + text{Value of } (8/2 + 1)^(th) text{ observation})/2`
`=(text{Value of }4^(th) text{ observation} + text{Value of }5^(th) text{ observation})/2`
`=(5 + 11)/2`
`=8`
`x` | `|x - bar x| = |x - 9.5|` | `|x - M| = |x - 8|` |
3 | 6.5 | 5 |
23 | 13.5 | 15 |
13 | 3.5 | 5 |
11 | 1.5 | 3 |
15 | 5.5 | 7 |
5 | 4.5 | 3 |
4 | 5.5 | 4 |
2 | 7.5 | 6 |
--- | --- | --- |
76 | 48 | 48 |
Mean deviation of Mean
`delta bar x = (sum |x - bar x|)/n`
`delta bar x = 48/8`
`delta bar x = 6`
Coefficient of Mean deviation `=(delta bar x)/(bar x)`
`=6/9.5`
`=0.6316`
Mean deviation of Median
`delta bar x = (sum |x - M|)/n`
`delta bar x = 48/8`
`delta bar x = 6`
Coefficient of Mean deviation `=(delta bar x)/(bar x)`
`=6/8`
`=0.75`
2. Find Mean deviation about MEAN;MEDIAN;MODE from the following data
`69,66,67,69,64,63,65,68,72`Solution:Mean `bar x=(sum x)/n`
`=(69+66+67+69+64+63+65+68+72)/9`
`=603/9`
`=67`
Median :Observations in the ascending order are :
`63,64,65,66,67,68,69,69,72`
Here, `n=9` is odd.
`M=` value of `((n+1)/2)^(th)` observation
`=` value of `((9+1)/2)^(th)` observation
`=` value of `5^(th)` observation
`=67`
Mode : In the given data, the observation `69` occurs maximum number of times (`2`)
`:. Z = 69`
`x` | `|x - bar x| = |x - 67|` | `|x - M| = |x - 67|` | `|x - Z| = |x - 69|` |
69 | 2 | 2 | 0 |
66 | 1 | 1 | 3 |
67 | 0 | 0 | 2 |
69 | 2 | 2 | 0 |
64 | 3 | 3 | 5 |
63 | 4 | 4 | 6 |
65 | 2 | 2 | 4 |
68 | 1 | 1 | 1 |
72 | 5 | 5 | 3 |
--- | --- | --- | --- |
603 | 20 | 20 | 24 |
Mean deviation of Mean
`delta bar x = (sum |x - bar x|)/n`
`delta bar x = 20/9`
`delta bar x = 2.2222`
Coefficient of Mean deviation `=(delta bar x)/(bar x)`
`=2.2222/67`
`=0.0332`
Mean deviation of Median
`delta bar x = (sum |x - M|)/n`
`delta bar x = 20/9`
`delta bar x = 2.2222`
Coefficient of Mean deviation `=(delta bar x)/(bar x)`
`=2.2222/67`
`=0.0332`
Mean deviation of Mode
`delta bar x = (sum |x - Z|)/n`
`delta bar x = 24/9`
`delta bar x = 2.6667`
Coefficient of Mean deviation `=(delta bar x)/(bar x)`
`=2.6667/69`
`=0.0386`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then