This is demo example. Please click on Find button and solution will be displayed in Solution tab (step by step)
Find Standard Deviation(S.D.) and Coefficient of Variation for grouped data
Calculate Coefficient of variation from the follwing grouped data
ClassFrequency
2 - 43
4 - 64
6 - 82
8 - 101


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`f*x^2=(f*x)xx(x)`
`(5)=(4)xx(3)`
2-43 3 `3=(2+4)/2` 9 `9=3xx3`
`(4)=(2)xx(3)`
 27 `27=9xx3`
`(5)=(4)xx(3)`
4-64 5 `5=(4+6)/2` 20 `20=4xx5`
`(4)=(2)xx(3)`
 100 `100=20xx5`
`(5)=(4)xx(3)`
6-82 7 `7=(6+8)/2` 14 `14=2xx7`
`(4)=(2)xx(3)`
 98 `98=14xx7`
`(5)=(4)xx(3)`
8-101 9 `9=(8+10)/2` 9 `9=1xx9`
`(4)=(2)xx(3)`
 81 `81=9xx9`
`(5)=(4)xx(3)`
---------------
--`n = 10`--`sum f*x=52``sum f*x^2=306`


Mean `bar x = (sum fx)/n`

`=52/10`

`=5.2`




`sigma = sqrt((sum f*x^2)/n - ((sum f*x)/n)^2)`

`=sqrt(306/10 - (52/10)^2)`

`=sqrt(306/10 - 2704/100)`

`=sqrt(30.6 - 27.04)`

`=sqrt(3.56)`

`=1.89`




Co-efficient of Variation `=sigma / bar x * 100 %`

`=1.89/5.2 * 100 %`

`=36.28 %`