This is demo example. Please click on Find button and solution will be displayed in Solution tab (step by step)
Find Standard Deviation and Coefficient of Variation for Mixed Data
1. Calculate Coefficient of variation from the follwing mixed data
ClassFrequency
21
32
42
5 - 98
10 - 1415
15 - 198
20 - 294


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`f*x^2=(f*x)xx(x)`
`(5)=(4)xx(3)`
`cf`
`(6)`
21 2 `2=2` 2 `2=1xx2`
`(4)=(2)xx(3)`
 4 `4=2xx2`
`(5)=(4)xx(3)`
 1 `1=0+1`
`(6)=`Previous `(6)+(2)`
32 3 `3=3` 6 `6=2xx3`
`(4)=(2)xx(3)`
 18 `18=6xx3`
`(5)=(4)xx(3)`
 3 `3=1+2`
`(6)=`Previous `(6)+(2)`
42 4 `4=4` 8 `8=2xx4`
`(4)=(2)xx(3)`
 32 `32=8xx4`
`(5)=(4)xx(3)`
 5 `5=3+2`
`(6)=`Previous `(6)+(2)`
5 - 98 7 `7=(5+9)/2` 56 `56=8xx7`
`(4)=(2)xx(3)`
 392 `392=56xx7`
`(5)=(4)xx(3)`
 13 `13=5+8`
`(6)=`Previous `(6)+(2)`
10 - 1415 12 `12=(10+14)/2` 180 `180=15xx12`
`(4)=(2)xx(3)`
 2160 `2160=180xx12`
`(5)=(4)xx(3)`
 28 `28=13+15`
`(6)=`Previous `(6)+(2)`
15 - 198 17 `17=(15+19)/2` 136 `136=8xx17`
`(4)=(2)xx(3)`
 2312 `2312=136xx17`
`(5)=(4)xx(3)`
 36 `36=28+8`
`(6)=`Previous `(6)+(2)`
20 - 294 24.5 `24.5=(20+29)/2` 98 `98=4xx24.5`
`(4)=(2)xx(3)`
 2401 `2401=98xx24.5`
`(5)=(4)xx(3)`
 40 `40=36+4`
`(6)=`Previous `(6)+(2)`
------------------
`n = 40`-----`sum f*x=486``sum f*x^2=7319`-----


Mean `bar x = (sum fx)/n`

`=486/40`

`=12.15`




To find Median Class
= value of `(n/2)^(th)` observation

= value of `(40/2)^(th)` observation

= value of `20^(th)` observation

From the column of cumulative frequency `cf`, we find that the `20^(th)` observation lies in the class `10 - 14`.

`:.` The median class is `9.5 - 14.5`.

Now,
`:. L = `lower boundary point of median class `=9.5`

`:. n = `Total frequency `=40`

`:. cf = `Cumulative frequency of the class preceding the median class `=13`

`:. f = `Frequency of the median class `=15`

`:. c = `class length of median class `=5`

Median `M = L + (n/2 - cf)/f * c`

`=9.5 + (20 - 13)/15 * 5`

`=9.5 + (7)/15 * 5`

`=9.5 + 2.33`

`=11.83`



`sigma = sqrt((sum f*x^2)/n - ((sum f*x)/n)^2)`

`=sqrt(7319/40 - (486/40)^2)`

`=sqrt(7319/40 - 236196/1600)`

`=sqrt(182.98 - 147.62)`

`=sqrt(35.35)`

`=5.95`




Co-efficient of Variation `=sigma / bar x * 100 %`

`=5.95/12.15 * 100 %`

`=48.94 %`