Home > Statistical Methods calculators > Pearson's Correlation Coefficient example

1. Pearson's Correlation Coefficient example ( Enter your problem )
  1. Formula & Example-1 (Class-X & Y)
  2. Example-2 (Class-X & Y)
  3. Example-3 (X & Y)
  4. Example-4 (X & Y)
Other related methods
  1. Correlation Coefficient r
  2. Covariance - Population Covariance, Sample Covariance

3. Example-3 (X & Y)
(Previous example)
2. Covariance - Population Covariance, Sample Covariance
(Next method)

4. Example-4 (X & Y)





Calculate Correlation Coefficient r without cov(x,y), Correlation Coefficient r with population cov(x,y), Correlation Coefficient r with sample cov(x,y) from the following data
XY
300800
350900
4001000
4501100
5001200
5501300
6001400
6501500
7001600


Solution:
Mean bar x = (sum x_i)/n

=(300+350+400+450+500+550+600+650+700)/9

=4500/9

=500

Mean bar y = (sum y_i)/n

=(800+900+1000+1100+1200+1300+1400+1500+1600)/9

=10800/9

=1200

xyX=(x-500)/50Y=(y-1200)/100X^2Y^2X*Y
300800-4-4161616
350900-3-3999
4001000-2-2444
4501100-1-1111
500120000000
550130011111
600140022444
650150033999
700160044161616
---------------------
450010800sum X=0sum Y=0sum X^2=60sum Y^2=60sum X*Y=60


Correlation Coefficient r :
r = (sum XY)/(sqrt(sum X^2) * sqrt(sum Y^2))

=60/(sqrt(60) * sqrt(60))

=60/(7.746 * 7.746)

=1




Correlation Coefficient r with Population Cov(x,y) :

Population Cov(x,y) = (sum (x-bar x)(y-bar y))/(n)

=60/9

=6.6667


Population Standard deviation sigma = sqrt((sum (x - bar x)^2)/(n))

=sqrt(60/9)

=sqrt(6.6667)

=2.582

Population Standard deviation sigma = sqrt((sum (y - bar y)^2)/(n))

=sqrt(60/9)

=sqrt(6.6667)

=2.582

Now, r = (cov(x,y))/(sigma_x * sigma_y)

= (6.6667)/(2.582 * 2.582)

=1




Correlation Coefficient r with Sample Cov(x,y) :

Sample Cov(x,y) = (sum (x-bar x)(y-bar y))/(n-1)

=60/8

=7.5


Sample Standard deviation sigma = sqrt((sum (x - bar x)^2)/(n-1))

=sqrt(60/8)

=sqrt(7.5)

=2.7386

Sample Standard deviation sigma = sqrt((sum (y - bar y)^2)/(n-1))

=sqrt(60/8)

=sqrt(7.5)

=2.7386

Now, r = (cov(x,y))/(sigma_x * sigma_y)

= (7.5)/(2.7386 * 2.7386)

=1






This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example-3 (X & Y)
(Previous example)
2. Covariance - Population Covariance, Sample Covariance
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.