Home > Statistical Methods calculators > Pearson's Correlation Coefficient example

1. Pearson's Correlation Coefficient example ( Enter your problem )
  1. Formula & Example-1 (Class-X & Y)
  2. Example-2 (Class-X & Y)
  3. Example-3 (X & Y)
  4. Example-4 (X & Y)
Other related methods
  1. Correlation Coefficient r
  2. Covariance - Population Covariance, Sample Covariance

3. Example-3 (X & Y)
(Previous example)
2. Covariance - Population Covariance, Sample Covariance
(Next method)

4. Example-4 (X & Y)





Calculate Correlation Coefficient r without cov(x,y), Correlation Coefficient r with population cov(x,y), Correlation Coefficient r with sample cov(x,y) from the following data
XY
300800
350900
4001000
4501100
5001200
5501300
6001400
6501500
7001600


Solution:
Mean `bar x = (sum x_i)/n`

`=(300+350+400+450+500+550+600+650+700)/9`

`=4500/9`

`=500`

Mean `bar y = (sum y_i)/n`

`=(800+900+1000+1100+1200+1300+1400+1500+1600)/9`

`=10800/9`

`=1200`

`x``y``X=(x-500)/50``Y=(y-1200)/100``X^2``Y^2``X*Y`
300800-4-4161616
350900-3-3999
4001000-2-2444
4501100-1-1111
500120000000
550130011111
600140022444
650150033999
700160044161616
---------------------
`4500``10800``sum X=0``sum Y=0``sum X^2=60``sum Y^2=60``sum X*Y=60`


Correlation Coefficient r :
`r = (sum XY)/(sqrt(sum X^2) * sqrt(sum Y^2))`

`=60/(sqrt(60) * sqrt(60))`

`=60/(7.746 * 7.746)`

`=1`




Correlation Coefficient r with Population Cov(x,y) :

Population `Cov(x,y) = (sum (x-bar x)(y-bar y))/(n)`

`=60/9`

`=6.6667`


Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/(n))`

`=sqrt(60/9)`

`=sqrt(6.6667)`

`=2.582`

Population Standard deviation `sigma = sqrt((sum (y - bar y)^2)/(n))`

`=sqrt(60/9)`

`=sqrt(6.6667)`

`=2.582`

Now, `r = (cov(x,y))/(sigma_x * sigma_y)`

`= (6.6667)/(2.582 * 2.582)`

`=1`




Correlation Coefficient r with Sample Cov(x,y) :

Sample `Cov(x,y) = (sum (x-bar x)(y-bar y))/(n-1)`

`=60/8`

`=7.5`


Sample Standard deviation `sigma = sqrt((sum (x - bar x)^2)/(n-1))`

`=sqrt(60/8)`

`=sqrt(7.5)`

`=2.7386`

Sample Standard deviation `sigma = sqrt((sum (y - bar y)^2)/(n-1))`

`=sqrt(60/8)`

`=sqrt(7.5)`

`=2.7386`

Now, `r = (cov(x,y))/(sigma_x * sigma_y)`

`= (7.5)/(2.7386 * 2.7386)`

`=1`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example-3 (X & Y)
(Previous example)
2. Covariance - Population Covariance, Sample Covariance
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.