Home > Statistical Methods calculators > Pearson's Correlation Coefficient for bivariate grouped data example

1. Pearson's Correlation Coefficient r for bivariate grouped data example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Correlation Coefficient r
  2. Covariance - Population Covariance, Sample Covariance

2. Example-2
(Next example)

1. Formula & Example-1





Formula
1. `r = (n * sum fdxdy - sum fdx * sum fdy)/(sqrt(n * sum f dx^2 - (sum f dx)^2) * sqrt(n * sum f dy^2 - (sum f dy)^2))`
2. Population `Cov(x,y) = (sum fdxdy - (sum fdx * sum fdy)/n)/(n)`
3. Sample `Cov(x,y) = (sum fdxdy - (sum fdx * sum fdy)/n)/(n-1)`

Examples
1. Calculate Correlation Coefficient r without cov(x,y), Correlation Coefficient r with population cov(x,y), Correlation Coefficient r with sample cov(x,y) from the following data
Class-Y
Class-X
10 - 2020 - 3030 - 4040 - 5050 - 60
15 - 2563000
25 - 353161000
35 - 450101570
45 - 55007104
55 - 6500045


Solution:
C.I.`(y)`10 - 2020 - 3030 - 4040 - 5050 - 60
M.V.`(y)`1525354555
C.I.`(x)`M.V.`(x)`
`dy`
`dx`
-2-1012`f_x``fdx``fdx^2``fdxdy`
15 - 2520-2[24]6[6]3[0]0[0]0[0]09-183630
25 - 3530-1[6]3[16]16[0]10[0]0[0]029-292922
35 - 45400[0]0[0]10[0]15[0]7[0]032000
45 - 55501[0]0[0]0[0]7[10]10[8]421212118
55 - 65602[0]0[0]0[0]0[8]4[20]59183628
`f_y`92932219100-812298
`fdy`-18-2902118-8
`fdy^2`362902136122
`fdxdy`30220182898


Correlation Coefficient r :
`r = (n * sum fdxdy - sum fdx * sum fdy)/(sqrt(n * sum f dx^2 - (sum f dx)^2) * sqrt(n * sum f dy^2 - (sum f dy)^2))`

`=(100 * 98 - -8 * -8 )/(sqrt(100 * 122 - (-8)^2) * sqrt(100 * 122 - (-8)^2)`

`=(9800 - 64)/(sqrt(12200 - 64) * sqrt(12200 - 64))`

`=9736/( sqrt(12136) * sqrt(12136))`

`=9736/( 110.1635 * 110.1635)`

`=9736/12136`

`=0.8022`




Correlation Coefficient r with Population Cov(x,y) :

Population `Cov(x,y) = (sum fdxdy - (sum fdx * sum fdy)/n)/(n)`

`=(98 - (-8 xx -8)/100)/100`

`=(98 - (64)/100)/100`

`=(98 - 0.64)/100`

`=(97.36)/100`

`=0.9736`


Population Standard deviation `sigma_x = sqrt((sum fdx^2 - (sum fdx)^2/n)/(n))`

`=sqrt((122 - (-8)^2/100)/100)`

`=sqrt((122 - 0.64)/100)`

`=sqrt(121.36/100)`

`=sqrt(1.2136)`

`=1.1016`

Population Standard deviation `sigma_y = sqrt((sum fdy^2 - (sum fdy)^2/n)/(n))`

`=sqrt((122 - (-8)^2/100)/100)`

`=sqrt((122 - 0.64)/100)`

`=sqrt(121.36/100)`

`=sqrt(1.2136)`

`=1.1016`

Now, `r = (cov(x,y))/(sigma_x * sigma_y)`

`= (0.9736)/(1.1016 * 1.1016)`

`=0.8022`




Correlation Coefficient r with Sample Cov(x,y) :

Sample `Cov(x,y) = (sum fdxdy - (sum fdx * sum fdy)/n)/(n-1)`

`=(98 - (-8 xx -8)/100)/99`

`=(98 - (64)/100)/99`

`=(98 - 0.64)/99`

`=(97.36)/99`

`=0.9834`


Sample Standard deviation `sigma_x = sqrt((sum fdx^2 - (sum fdx)^2/n)/(n-1))`

`=sqrt((122 - (-8)^2/100)/99)`

`=sqrt((122 - 0.64)/99)`

`=sqrt(121.36/99)`

`=sqrt(1.2259)`

`=1.1072`

Sample Standard deviation `sigma_y = sqrt((sum fdy^2 - (sum fdy)^2/n)/(n-1))`

`=sqrt((122 - (-8)^2/100)/99)`

`=sqrt((122 - 0.64)/99)`

`=sqrt(121.36/99)`

`=sqrt(1.2259)`

`=1.1072`

Now, `r = (cov(x,y))/(sigma_x * sigma_y)`

`= (0.9834)/(1.1072 * 1.1072)`

`=0.8022`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.