Home > Statistical Methods calculators > Pearson's Correlation Coefficient for bivariate grouped data example

1. Pearson's Correlation Coefficient r for bivariate grouped data example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Correlation Coefficient r
  2. Covariance - Population Covariance, Sample Covariance

1. Formula & Example-1
(Previous example)
3. Example-3
(Next example)

2. Example-2





Calculate Correlation Coefficient r without cov(x,y), Correlation Coefficient r with population cov(x,y), Correlation Coefficient r with sample cov(x,y) from the following data
Y
Class-X
18192021
350 - 40014610
300 - 3502685
250 - 3003542
200 - 2504421


Solution:
M.V.`(y)`18192021
C.I.`(x)`M.V.`(x)`
`dy`
`dx`
-1012`f_x``fdx``fdx^2``fdxdy`
350 - 4003751[-1]1[0]4[6]6[20]1021212125
300 - 3503250[0]2[0]6[0]8[0]521000
250 - 300275-1[3]3[0]5[-4]4[-4]214-1414-5
200 - 250225-2[8]4[0]4[-4]2[-4]111-22440
`f_y`1019201867-157920
`fdy`-100203646
`fdy^2`1002072102
`fdxdy`100-21220


Correlation Coefficient r :
`r = (n * sum fdxdy - sum fdx * sum fdy)/(sqrt(n * sum f dx^2 - (sum f dx)^2) * sqrt(n * sum f dy^2 - (sum f dy)^2))`

`=(67 * 20 - -15 * 46 )/(sqrt(67 * 79 - (-15)^2) * sqrt(67 * 102 - (46)^2)`

`=(1340 + 690)/(sqrt(5293 - 225) * sqrt(6834 - 2116))`

`=2030/( sqrt(5068) * sqrt(4718))`

`=2030/( 71.1899 * 68.6877)`

`=2030/4889.8695`

`=0.4151`




Correlation Coefficient r with Population Cov(x,y) :

Population `Cov(x,y) = (sum fdxdy - (sum fdx * sum fdy)/n)/(n)`

`=(20 - (-15 xx 46)/67)/67`

`=(20 - (-690)/67)/67`

`=(20 - -10.2985)/67`

`=(30.2985)/67`

`=0.4522`


Population Standard deviation `sigma_x = sqrt((sum fdx^2 - (sum fdx)^2/n)/(n))`

`=sqrt((79 - (-15)^2/67)/67)`

`=sqrt((79 - 3.3582)/67)`

`=sqrt(75.6418/67)`

`=sqrt(1.129)`

`=1.0625`

Population Standard deviation `sigma_y = sqrt((sum fdy^2 - (sum fdy)^2/n)/(n))`

`=sqrt((102 - (46)^2/67)/67)`

`=sqrt((102 - 31.5821)/67)`

`=sqrt(70.4179/67)`

`=sqrt(1.051)`

`=1.0252`

Now, `r = (cov(x,y))/(sigma_x * sigma_y)`

`= (0.4522)/(1.0625 * 1.0252)`

`=0.4151`




Correlation Coefficient r with Sample Cov(x,y) :

Sample `Cov(x,y) = (sum fdxdy - (sum fdx * sum fdy)/n)/(n-1)`

`=(20 - (-15 xx 46)/67)/66`

`=(20 - (-690)/67)/66`

`=(20 - -10.2985)/66`

`=(30.2985)/66`

`=0.4591`


Sample Standard deviation `sigma_x = sqrt((sum fdx^2 - (sum fdx)^2/n)/(n-1))`

`=sqrt((79 - (-15)^2/67)/66)`

`=sqrt((79 - 3.3582)/66)`

`=sqrt(75.6418/66)`

`=sqrt(1.1461)`

`=1.0706`

Sample Standard deviation `sigma_y = sqrt((sum fdy^2 - (sum fdy)^2/n)/(n-1))`

`=sqrt((102 - (46)^2/67)/66)`

`=sqrt((102 - 31.5821)/66)`

`=sqrt(70.4179/66)`

`=sqrt(1.0669)`

`=1.0329`

Now, `r = (cov(x,y))/(sigma_x * sigma_y)`

`= (0.4591)/(1.0706 * 1.0329)`

`=0.4151`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example-1
(Previous example)
3. Example-3
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.