Home > Statistical Methods calculators > Pearson's Correlation Coefficient for bivariate grouped data example

1. Pearson's Correlation Coefficient r for bivariate grouped data example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Correlation Coefficient r
  2. Covariance - Population Covariance, Sample Covariance

2. Example-2
(Previous example)
2. Covariance - Population Covariance, Sample Covariance
(Next method)

3. Example-3





Calculate Correlation Coefficient r without cov(x,y), Correlation Coefficient r with population cov(x,y), Correlation Coefficient r with sample cov(x,y) from the following data
Class-Y
Class-X
90 - 100100 - 110110 - 120120 - 130
50 - 554752
55 - 6061074
60 - 65612107
65 - 703863


Solution:
C.I.`(y)`90 - 100100 - 110110 - 120120 - 130
M.V.`(y)`95105115125
C.I.`(x)`M.V.`(x)`
`dy`
`dx`
-1012`f_x``fdx``fdx^2``fdxdy`
50 - 5552.5-1[4]4[0]7[-5]5[-4]218-1818-5
55 - 6057.50[0]6[0]10[0]7[0]427000
60 - 6562.51[-6]6[0]12[10]10[14]735353518
65 - 7067.52[-6]3[0]8[12]6[12]320408018
`f_y`193728161005713331
`fdy`-190283241
`fdy^2`1902864111
`fdxdy`-80172231


Correlation Coefficient r :
`r = (n * sum fdxdy - sum fdx * sum fdy)/(sqrt(n * sum f dx^2 - (sum f dx)^2) * sqrt(n * sum f dy^2 - (sum f dy)^2))`

`=(100 * 31 - 57 * 41 )/(sqrt(100 * 133 - (57)^2) * sqrt(100 * 111 - (41)^2)`

`=(3100 - 2337)/(sqrt(13300 - 3249) * sqrt(11100 - 1681))`

`=763/( sqrt(10051) * sqrt(9419))`

`=763/( 100.2547 * 97.0515)`

`=763/9729.8699`

`=0.0784`




Correlation Coefficient r with Population Cov(x,y) :

Population `Cov(x,y) = (sum fdxdy - (sum fdx * sum fdy)/n)/(n)`

`=(31 - (57 xx 41)/100)/100`

`=(31 - (2337)/100)/100`

`=(31 - 23.37)/100`

`=(7.63)/100`

`=0.0763`


Population Standard deviation `sigma_x = sqrt((sum fdx^2 - (sum fdx)^2/n)/(n))`

`=sqrt((133 - (57)^2/100)/100)`

`=sqrt((133 - 32.49)/100)`

`=sqrt(100.51/100)`

`=sqrt(1.0051)`

`=1.0025`

Population Standard deviation `sigma_y = sqrt((sum fdy^2 - (sum fdy)^2/n)/(n))`

`=sqrt((111 - (41)^2/100)/100)`

`=sqrt((111 - 16.81)/100)`

`=sqrt(94.19/100)`

`=sqrt(0.9419)`

`=0.9705`

Now, `r = (cov(x,y))/(sigma_x * sigma_y)`

`= (0.0763)/(1.0025 * 0.9705)`

`=0.0784`




Correlation Coefficient r with Sample Cov(x,y) :

Sample `Cov(x,y) = (sum fdxdy - (sum fdx * sum fdy)/n)/(n-1)`

`=(31 - (57 xx 41)/100)/99`

`=(31 - (2337)/100)/99`

`=(31 - 23.37)/99`

`=(7.63)/99`

`=0.0771`


Sample Standard deviation `sigma_x = sqrt((sum fdx^2 - (sum fdx)^2/n)/(n-1))`

`=sqrt((133 - (57)^2/100)/99)`

`=sqrt((133 - 32.49)/99)`

`=sqrt(100.51/99)`

`=sqrt(1.0153)`

`=1.0076`

Sample Standard deviation `sigma_y = sqrt((sum fdy^2 - (sum fdy)^2/n)/(n-1))`

`=sqrt((111 - (41)^2/100)/99)`

`=sqrt((111 - 16.81)/99)`

`=sqrt(94.19/99)`

`=sqrt(0.9514)`

`=0.9754`

Now, `r = (cov(x,y))/(sigma_x * sigma_y)`

`= (0.0771)/(1.0076 * 0.9754)`

`=0.0784`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Previous example)
2. Covariance - Population Covariance, Sample Covariance
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.