Home > Statistical Methods calculators > Find the equation of two regression lines, also estimate example

1. Find the equation of two regression lines, also estimate example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
Other related methods
  1. Find the equation of two regression lines, also estimate
  2. Find Correlation Coefficient from two Regression line equations
  3. Find Regression line equations using mean, standard deviation and correlation
  4. Find Regression line equations from `sum x, sum y, sum x^2, sum y^2, sum xy, n`

2. Example-2
(Next example)

1. Formula & Example-1





Formula
1. Regression coefficient
Regression coefficient `y` on `x` Regression coefficient `x` on `y`
1. `byx = (sum (x-bar x)(y-bar y))/(sum (x-bar x)^2)` `bxy = (sum (x-bar x)(y-bar y))/(sum (y-bar y)^2)`
2. `byx = (n sum xy - (sum x)(sum y))/(n sum x^2 - (sum x)^2)` `bxy = (n sum xy - (sum x)(sum y))/(n sum y^2 - (sum y)^2)`
3. `byx = (n sum dx dy - (sum dx)(sum dy))/(n sum dx^2 - (sum dx)^2)` `bxy = (n sum dx dy - (sum dx)(sum dy))/(n sum dy^2 - (sum dy)^2)`
4. `byx = r * (sigma y)/(sigma x)` `bxy = r * (sigma x)/(sigma y)`

2. Regression Line y on x
`y - bar y = byx (x - bar x)`

3. Regression Line x on y
`x - bar x = bxy (y - bar y)`
Example-1
1. Find Regression line equations from the following data
Class-XY
2 - 43
4 - 64
6 - 82
8 - 101


Solution:
Class-XMid value `x``y``x^2``y^2``x*y`
2 - 433999
4 - 654251620
6 - 87249414
8 - 10918119
------------------
`sum x=24``sum y=10``sum x^2=164``sum y^2=30``sum xy=52`


Mean `bar x = (sum x)/n`

`=24/4`

`=6`


Mean `bar y = (sum y)/n`

`=10/4`

`=2.5`


`byx = (n sum xy - (sum x)(sum y))/(n sum x^2 - (sum x)^2)`

`=(4 * 52 - 24 * 10 )/(4 * 164 - (24)^2)`

`=(208 - 240 )/(656 - 576)`

`=-32/80`

`=-0.4`


Regression Line y on x
`y - bar y = byx (x - bar x)`

`y - 2.5 = -0.4 (x - 6)`

`y - 2.5 = -0.4 x + 2.4`

`y = -0.4 x + 2.4 + 2.5`

`y = -0.4 x + 4.9`


`bxy = (n sum xy - (sum x)(sum y))/(n sum y^2 - (sum y)^2)`

`=(4 * 52 - 24 * 10 )/(4 * 30 - (10)^2)`

`=(208 - 240 )/(120 - 100)`

`=-32/20`

`=-1.6`


Regression Line x on y
`x - bar x = bxy (y - bar y)`

`x - 6 = -1.6 (y - 2.5)`

`x - 6 = -1.6 y + 4`

`x = -1.6 y + 4 + 6`

`x = -1.6 y + 10`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.