Home > Statistical Methods calculators > Find the equation of two regression lines, also estimate example

1. Find the equation of two regression lines, also estimate example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
Other related methods
  1. Find the equation of two regression lines, also estimate
  2. Find Correlation Coefficient from two Regression line equations
  3. Find Regression line equations using mean, standard deviation and correlation
  4. Find Regression line equations from `sum x, sum y, sum x^2, sum y^2, sum xy, n`

1. Formula & Example-1
(Previous example)
2. Find Correlation Coefficient from two Regression line equations
(Next method)

2. Example-2





2. Find Regression line equations from the following data
XY
01
15
210
36
43


Solution:
Mean `bar x = (sum x_i)/n`

` = (0+1+2+3+4)/5`

` = 10/5`

` = 2`

Mean `bar y = (sum y_i)/n`

` = (1+5+10+6+3)/5`

` = 25/5`

` = 5`

`x``y``X=x-bar x=x-2``Y=y-bar y=y-5``X^2``Y^2``X*Y`
01 -2 `-2=0-2` -4 `-4=1-5` 4 `4=(-2)^2` 16 `16=(-4)^2` 8 `8=-2 xx -4`
15 -1 `-1=1-2` 0 `0=5-5` 1 `1=(-1)^2` 0 `0=(0)^2` 0 `0=-1 xx 0`
210 0 `0=2-2` 5 `5=10-5` 0 `0=(0)^2` 25 `25=(5)^2` 0 `0=0 xx 5`
36 1 `1=3-2` 1 `1=6-5` 1 `1=(1)^2` 1 `1=(1)^2` 1 `1=1 xx 1`
43 2 `2=4-2` -2 `-2=3-5` 4 `4=(2)^2` 4 `4=(-2)^2` -4 `-4=2 xx -2`
---------------------
`10``25``sum X=0``sum Y=0``sum X^2=10``sum Y^2=46``sum X*Y=5`


`byx = (sum XY)/(sum X^2)`

`=5/10`

`=0.5`


Regression Line y on x
`y - bar y = byx (x - bar x)`

`y - 5 = 0.5 (x - 2)`

`y - 5 = 0.5 x - 1`

`y = 0.5 x - 1 + 5`

`y = 0.5 x + 4`


`bxy = (sum XY)/(sum Y^2)`

`=5/46`

`=0.1087`


Regression Line x on y
`x - bar x = bxy (y - bar y)`

`x - 2 = 0.1087 (y - 5)`

`x - 2 = 0.1087 y - 0.5435`

`x = 0.1087 y - 0.5435 + 2`

`x = 0.1087 y + 1.4565`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example-1
(Previous example)
2. Find Correlation Coefficient from two Regression line equations
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.