Formula
1. Regression coefficient `y` on `x`
`byx = (n * sum fdxdy - sum fdx * sum fdy ) / (n * sum fdx^2 - (sum fdx)^2) * (h_y)/(h_x)`
|
2. Regression coefficient `x` on `y`
`bxy = (n * sum fdxdy - sum fdx * sum fdy ) / (n * sum fdy^2 - (sum fdy)^2) * (h_x)/(h_y)`
|
3. Regression Line y on x
`y - bar y = byx (x - bar x)`
|
4. Regression Line x on y
`x - bar x = bxy (y - bar y)`
|
Examples
1. Find Regression line equations from the following data
Class-Y Class-X | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 |
15 - 25 | 6 | 3 | 0 | 0 | 0 |
25 - 35 | 3 | 16 | 10 | 0 | 0 |
35 - 45 | 0 | 10 | 15 | 7 | 0 |
45 - 55 | 0 | 0 | 7 | 10 | 4 |
55 - 65 | 0 | 0 | 0 | 4 | 5 |
Solution: | | C.I.`(y)` | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | | | | |
| | M.V.`(y)` | 15 `15=(10+20)/2` | 25 `25=(20+30)/2` | 35 `35=(30+40)/2` | 45 `45=(40+50)/2` | 55 `55=(50+60)/2` | | | | |
C.I.`(x)` | M.V.`(x)` | `dy` `dx` | -2 `-2=(15-35)/10` `dy=(y-35)/10` | -1 `-1=(25-35)/10` `dy=(y-35)/10` | 0 `0=(35-35)/10` `dy=(y-35)/10` | 1 `1=(45-35)/10` `dy=(y-35)/10` | 2 `2=(55-35)/10` `dy=(y-35)/10` | `f_x` | `fdx` | `fdx^2` | `fdxdy` |
15 - 25 | 20 `20=(15+25)/2` | -2 `-2=(20-40)/10` `dx=(x-40)/10` | [24] `24=6*-2*-2` `f*dx*dy`6 | [6] `6=3*-2*-1` `f*dx*dy`3 | [0] `0=0*-2*0` `f*dx*dy`0 | [0] `0=0*-2*1` `f*dx*dy`0 | [0] `0=0*-2*2` `f*dx*dy`0 | 9 `9=6+3+0+0+0` | -18 `-18=9*-2` `fdx=f_x*dx` | 36 `36=-18*-2` `fdx^2=fdx*dx` | 30 `30=24+6+0+0+0` |
25 - 35 | 30 `30=(25+35)/2` | -1 `-1=(30-40)/10` `dx=(x-40)/10` | [6] `6=3*-1*-2` `f*dx*dy`3 | [16] `16=16*-1*-1` `f*dx*dy`16 | [0] `0=10*-1*0` `f*dx*dy`10 | [0] `0=0*-1*1` `f*dx*dy`0 | [0] `0=0*-1*2` `f*dx*dy`0 | 29 `29=3+16+10+0+0` | -29 `-29=29*-1` `fdx=f_x*dx` | 29 `29=-29*-1` `fdx^2=fdx*dx` | 22 `22=6+16+0+0+0` |
35 - 45 | 40 `40=(35+45)/2` | 0 `0=(40-40)/10` `dx=(x-40)/10` | [0] `0=0*0*-2` `f*dx*dy`0 | [0] `0=10*0*-1` `f*dx*dy`10 | [0] `0=15*0*0` `f*dx*dy`15 | [0] `0=7*0*1` `f*dx*dy`7 | [0] `0=0*0*2` `f*dx*dy`0 | 32 `32=0+10+15+7+0` | 0 `0=32*0` `fdx=f_x*dx` | 0 `0=0*0` `fdx^2=fdx*dx` | 0 `0=0+0+0+0+0` |
45 - 55 | 50 `50=(45+55)/2` | 1 `1=(50-40)/10` `dx=(x-40)/10` | [0] `0=0*1*-2` `f*dx*dy`0 | [0] `0=0*1*-1` `f*dx*dy`0 | [0] `0=7*1*0` `f*dx*dy`7 | [10] `10=10*1*1` `f*dx*dy`10 | [8] `8=4*1*2` `f*dx*dy`4 | 21 `21=0+0+7+10+4` | 21 `21=21*1` `fdx=f_x*dx` | 21 `21=21*1` `fdx^2=fdx*dx` | 18 `18=0+0+0+10+8` |
55 - 65 | 60 `60=(55+65)/2` | 2 `2=(60-40)/10` `dx=(x-40)/10` | [0] `0=0*2*-2` `f*dx*dy`0 | [0] `0=0*2*-1` `f*dx*dy`0 | [0] `0=0*2*0` `f*dx*dy`0 | [8] `8=4*2*1` `f*dx*dy`4 | [20] `20=5*2*2` `f*dx*dy`5 | 9 `9=0+0+0+4+5` | 18 `18=9*2` `fdx=f_x*dx` | 36 `36=18*2` `fdx^2=fdx*dx` | 28 `28=0+0+0+8+20` |
| | `f_y` | 9 `9=6+3+0+0+0` | 29 `29=3+16+10+0+0` | 32 `32=0+10+15+7+0` | 21 `21=0+0+7+10+4` | 9 `9=0+0+0+4+5` | 100 `n=sum f_x=100=9+29+32+21+9` OR `n=sum f_y=100=9+29+32+21+9` | -8 `sum fdx=-8=-18-29+0+21+18` | 122 `sum fdx^2=122=36+29+0+21+36` | 98 `sum fdxdy=98=30+22+0+18+28` |
| | `fdy` | -18 `-18=9*-2` `fdy=f_y*dy` | -29 `-29=29*-1` `fdy=f_y*dy` | 0 `0=32*0` `fdy=f_y*dy` | 21 `21=21*1` `fdy=f_y*dy` | 18 `18=9*2` `fdy=f_y*dy` | -8 `sum fdy=-8=-18-29+0+21+18` | | | |
| | `fdy^2` | 36 `36=-18*-2` `fdy^2=fdy*dy` | 29 `29=-29*-1` `fdy^2=fdy*dy` | 0 `0=0*0` `fdy^2=fdy*dy` | 21 `21=21*1` `fdy^2=fdy*dy` | 36 `36=18*2` `fdy^2=fdy*dy` | 122 `sum fdy^2=122=-18-29+0+21+18` | | | |
| | `fdxdy` | 30 `30=24+6+0+0+0` | 22 `22=6+16+0+0+0` | 0 `0=0+0+0+0+0` | 18 `18=0+0+0+10+8` | 28 `28=0+0+0+8+20` | 98 `sum fdxdy=98=30+22+0+18+28` | | | |
`bar X = A + (sum fdx)/n * h_x`
`=40 + -8/100 * 10`
`=40 + -0.08 * 10`
`=40 + -0.8`
`=39.2`
`bar Y = B + (sum fdy)/n * h_y`
`=35 + -8/100 * 10`
`=35 + -0.08 * 10`
`=35 + -0.8`
`=34.2`
`byx = (n * sum fdxdy - sum fdx * sum fdy ) / (n * sum fdx^2 - (sum fdx)^2) * (h_y)/(h_x)`
`=(100 * 98 - -8 * -8 )/(100 * 122 - (-8)^2) * 10/10`
`=(9800 - 64 )/(12200 - 64) * 10/10`
`=9736/12136 * 10/10`
`=0.8`
Regression Line y on x
`y - bar y = byx (x - bar x)`
`y - 34.2 = 0.8 (x - 39.2)`
`y - 34.2 = 0.8 x - 31.45`
`y = 0.8 x - 31.45 + 34.2`
`y = 0.8 x + 2.75`
`bxy = (n * sum fdxdy - sum fdx * sum fdy ) / (n * sum fdy^2 - (sum fdy)^2) * (h_x)/(h_y)`
`=(100 * 98 - -8 * -8 )/(100 * 122 - (-8)^2) * 10/10`
`=(9800 - 64 )/(12200 - 64) * 10/10`
`=9736/12136 * 10/10`
`=0.8`
Regression Line x on y
`x - bar x = bxy (y - bar y)`
`x - 39.2 = 0.8 (y - 34.2)`
`x - 39.2 = 0.8 y - 27.44`
`x = 0.8 y - 27.44 + 39.2`
`x = 0.8 y + 11.76`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then