Home > Statistical Methods calculators > Regression line equations for bivariate grouped data example

Regression line equations for bivariate grouped data example ( Enter your problem )
  1. Example-1 (Class-X & Class-Y)
  2. Example-2 (Class-X & Y)
  3. Example-3 (Class-X & Class-Y)

1. Example-1 (Class-X & Class-Y)
(Previous example)
3. Example-3 (Class-X & Class-Y)
(Next example)

2. Example-2 (Class-X & Y)





Formula
1. `byx = (n * sum fdxdy - sum fdx * sum fdy ) / (n * sum fdx^2 - (sum fdx)^2) * (h_y)/(h_x)`
2. `bxy = (n * sum fdxdy - sum fdx * sum fdy ) / (n * sum fdy^2 - (sum fdy)^2) * (h_x)/(h_y)`
3. Regression Line y on x `y - bar y = byx (x - bar x)`
4. Regression Line x on y `x - bar x = bxy (y - bar y)`

Examples
2. Find Regression line equations from the following data
Y
Class-X
18192021
350 - 40014610
300 - 3502685
250 - 3003542
200 - 2504421


Solution:
M.V.`(y)`18192021
C.I.`(x)`M.V.`(x)`
`dy`
`dx`
 -1 `-1=18-19`
`dy=y-19`
 0 `0=19-19`
`dy=y-19`
 1 `1=20-19`
`dy=y-19`
 2 `2=21-19`
`dy=y-19`
`f_x``fdx``fdx^2``fdxdy`
350 - 400 375 `375=(350+400)/2` 1 `1=(375-325)/50`
`dx=(x-325)/50`
 [-1] `-1=1*1*-1`
`f*dx*dy`
1
 [0] `0=4*1*0`
`f*dx*dy`
4
 [6] `6=6*1*1`
`f*dx*dy`
6
 [20] `20=10*1*2`
`f*dx*dy`
10
 21 `21=1+4+6+10` 21 `21=21*1`
`fdx=f_x*dx`
 21 `21=21*1`
`fdx^2=fdx*dx`
 25 `25=-1+0+6+20`
300 - 350 325 `325=(300+350)/2` 0 `0=(325-325)/50`
`dx=(x-325)/50`
 [0] `0=2*0*-1`
`f*dx*dy`
2
 [0] `0=6*0*0`
`f*dx*dy`
6
 [0] `0=8*0*1`
`f*dx*dy`
8
 [0] `0=5*0*2`
`f*dx*dy`
5
 21 `21=2+6+8+5` 0 `0=21*0`
`fdx=f_x*dx`
 0 `0=0*0`
`fdx^2=fdx*dx`
 0 `0=0+0+0+0`
250 - 300 275 `275=(250+300)/2` -1 `-1=(275-325)/50`
`dx=(x-325)/50`
 [3] `3=3*-1*-1`
`f*dx*dy`
3
 [0] `0=5*-1*0`
`f*dx*dy`
5
 [-4] `-4=4*-1*1`
`f*dx*dy`
4
 [-4] `-4=2*-1*2`
`f*dx*dy`
2
 14 `14=3+5+4+2` -14 `-14=14*-1`
`fdx=f_x*dx`
 14 `14=-14*-1`
`fdx^2=fdx*dx`
 -5 `-5=3+0-4-4`
200 - 250 225 `225=(200+250)/2` -2 `-2=(225-325)/50`
`dx=(x-325)/50`
 [8] `8=4*-2*-1`
`f*dx*dy`
4
 [0] `0=4*-2*0`
`f*dx*dy`
4
 [-4] `-4=2*-2*1`
`f*dx*dy`
2
 [-4] `-4=1*-2*2`
`f*dx*dy`
1
 11 `11=4+4+2+1` -22 `-22=11*-2`
`fdx=f_x*dx`
 44 `44=-22*-2`
`fdx^2=fdx*dx`
 0 `0=8+0-4-4`
`f_y` 10 `10=1+2+3+4` 19 `19=4+6+5+4` 20 `20=6+8+4+2` 18 `18=10+5+2+1` 67 `n=sum f_x=67=21+21+14+11`
OR
`n=sum f_y=67=10+19+20+18`
 -15 `sum fdx=-15=21+0-14-22` 79 `sum fdx^2=79=21+0+14+44` 20 `sum fdxdy=20=25+0-5+0`
`fdy` -10 `-10=10*-1`
`fdy=f_y*dy`
 0 `0=19*0`
`fdy=f_y*dy`
 20 `20=20*1`
`fdy=f_y*dy`
 36 `36=18*2`
`fdy=f_y*dy`
 46 `sum fdy=46=-10+0+20+36`
`fdy^2` 10 `10=-10*-1`
`fdy^2=fdy*dy`
 0 `0=0*0`
`fdy^2=fdy*dy`
 20 `20=20*1`
`fdy^2=fdy*dy`
 72 `72=36*2`
`fdy^2=fdy*dy`
 102 `sum fdy^2=102=-10+0+20+36`
`fdxdy` 10 `10=-1+0+3+8` 0 `0=0+0+0+0` -2 `-2=6+0-4-4` 12 `12=20+0-4-4` 20 `sum fdxdy=20=10+0-2+12`


`bar X = A + (sum fdx)/n * h_x`

`=325 + -15/67 * 50`

`=325 + -0.2239 * 50`

`=325 + -11.194`

`=313.806`


`bar Y = B + (sum fdy)/n * h_y`

`=19 + 46/67 * 1`

`=19 + 0.6866 * 1`

`=19 + 0.6866`

`=19.6866`


`byx = (n * sum fdxdy - sum fdx * sum fdy ) / (n * sum fdx^2 - (sum fdx)^2) * (h_y)/(h_x)`

`=(67 * 20 - -15 * 46 )/(67 * 79 - (-15)^2) * 1/50`

`=(1340 + 690 )/(5293 - 225) * 1/50`

`=2030/5068 * 1/50`

`=0.008`


Regression Line y on x
`y - bar y = byx (x - bar x)`

`y - 19.6866 = 0.008 (x - 313.806)`

`y - 19.6866 = 0.008 x - 2.5139`

`y = 0.008 x - 2.5139 + 19.6866`

`y = 0.008 x + 17.1727`


`bxy = (n * sum fdxdy - sum fdx * sum fdy ) / (n * sum fdy^2 - (sum fdy)^2) * (h_x)/(h_y)`

`=(67 * 20 - -15 * 46 )/(67 * 102 - (46)^2) * 50/1`

`=(1340 + 690 )/(6834 - 2116) * 50/1`

`=2030/4718 * 50/1`

`=21.5134`


Regression Line x on y
`x - bar x = bxy (y - bar y)`

`x - 313.806 = 21.5134 (y - 19.6866)`

`x - 313.806 = 21.5134 y - 423.5241`

`x = 21.5134 y - 423.5241 + 313.806`

`x = 21.5134 y - 109.7181`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Example-1 (Class-X & Class-Y)
(Previous example)
3. Example-3 (Class-X & Class-Y)
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.