1. Calculate Cubic Splines y(0.5)Solution:Cubic spline formula is
f(x)=(x_i-x)^3/(6h) M_(i-1) + (x-x_(i-1))^3/(6h) M_i + ((x_i-x))/h (y_(i-1)-h^2/6 M_(i-1)) + ((x-x_(i-1)))/h (y_i-h^2/6 M_i) ->(1)We have,
M_(i-1)+4M_(i)+M_(i+1)=6/h^2(y_(i-1)-2y_(i)+y_(i+1))->(2)Here
h=1,n=2M_0=0,M_2=0Substitute
i=1 in equation
(2)M_0+4M_1+M_2=6/h^2(y_0-2y_1+y_2)=>0+4M_1+0=6/1*(-5-2*-4+3)=>4M_1=36=>M_1=9Substitute
i=1 in equation
(1), we get cubic spline in
1^(st) interval
[x_0,x_1]=[0,1]f_1(x)=(x_1-x)^3/(6h) M_0 + (x-x_0)^3/(6h) M_1 + ((x_1-x))/h (y_0-h^2/6 M_0)+((x-x_0))/h (y_1-h^2/6 M_1)f_1(x)=(1-x)^3/6 *0 + (x-0)^3/6 *9 + ((1-x))/1 (-5-1/6 *0) + ((x-0))/1 (-4-1/6 *9)f_1(x)=1/2(3x^3-x-10), for
0<=x<=1
Substitute
i=2 in equation
(1), we get cubic spline in
2^(nd) interval
[x_1,x_2]=[1,2]f_2(x)=(x_2-x)^3/(6h) M_1 + (x-x_1)^3/(6h) M_2 + ((x_2-x))/h (y_1-h^2/6 M_1)+((x-x_1))/h (y_2-h^2/6 M_2)f_2(x)=(2-x)^3/6 *9 + (x-1)^3/6 *0 + ((2-x))/1 (-4-1/6 *9) + ((x-1))/1 (3-1/6 *0)f_2(x)=1/2(-3x^3+18x^2-19x-4), for
1<=x<=2
For
y(0.5),
0.5 in [0,1], so substitute
x=0.5 in
f_1(x), we get
f_1(0.5)=-5.0625
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then