Home > Matrix & Vector calculators > Inverse of matrix using Cayley Hamilton method example

3. Cayley Hamilton method example ( Enter your problem )
  1. Example `[[3,1,1],[-1,2,1],[1,1,1]]`
  2. Example `[[2,3,1],[0,5,6],[1,1,2]]`
  3. Example `[[2,3],[4,10]]`
  4. Example `[[5,1],[4,2]]`
Other related methods
  1. Adjoint method
  2. Gauss-Jordan Elimination method
  3. Cayley Hamilton method

2. Example `[[2,3,1],[0,5,6],[1,1,2]]`
(Previous example)
4. Example `[[5,1],[4,2]]`
(Next example)

3. Example `[[2,3],[4,10]]`





Find Inverse of matrix using Cayley Hamilton method
`A=[[2,3],[4,10]]`


Solution:
To apply the Cayley-Hamilton theorem, we first determine the characteristic polynomial p(t) of the matrix A.
`|A-tI|`

 = 
 `(2-t)`  `3` 
 `4`  `(10-t)` 


`=(2-t) × (10-t) - 3 × 4`

`=(20-12t+t^2)-12`

`=t^2-12t+8`

`p(t)=t^2-12t+8`

The Cayley-Hamilton theorem yields that
`O = p(A)=A^2-12A+8I`

Rearranging terms, we have
`:. -8I = A(A-12I)`

`:. A^-1 = 1/-8(A-12I)`

Now, first we find `A-12I`

`12 × I` = `12` × 
`1``0`
`0``1`
 = 
`12``0`
`0``12`


`A - 12 × I` = 
`2``3`
`4``10`
 - 
`12``0`
`0``12`
 = 
`2-12``3`
`4``10-12`
 = 
`-10``3`
`4``-2`


Now, `A^-1 = 1/-8(A-12I)`

`:. A^-1 = ``1/(-8)`
`-10``3`
`4``-2`



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example `[[2,3,1],[0,5,6],[1,1,2]]`
(Previous example)
4. Example `[[5,1],[4,2]]`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.