Home > Matrix & Vector calculators > Inverse of matrix using Cayley Hamilton method example

3. Cayley Hamilton method example ( Enter your problem )
  1. Example `[[3,1,1],[-1,2,1],[1,1,1]]`
  2. Example `[[2,3,1],[0,5,6],[1,1,2]]`
  3. Example `[[2,3],[4,10]]`
  4. Example `[[5,1],[4,2]]`
Other related methods
  1. Adjoint method
  2. Gauss-Jordan Elimination method
  3. Cayley Hamilton method

3. Example `[[2,3],[4,10]]`
(Previous example)

4. Example `[[5,1],[4,2]]`





Find Inverse of matrix using Cayley Hamilton method
`A=[[5,1],[4,2]]`


Solution:
To apply the Cayley-Hamilton theorem, we first determine the characteristic polynomial p(t) of the matrix A.
`|A-tI|`

 = 
 `(5-t)`  `1` 
 `4`  `(2-t)` 


`=(5-t) × (2-t) - 1 × 4`

`=(10-7t+t^2)-4`

`=t^2-7t+6`

`p(t)=t^2-7t+6`

The Cayley-Hamilton theorem yields that
`O = p(A)=A^2-7A+6I`

Rearranging terms, we have
`:. -6I = A(A-7I)`

`:. A^-1 = 1/-6(A-7I)`

Now, first we find `A-7I`

`7 × I` = `7` × 
`1``0`
`0``1`
 = 
`7``0`
`0``7`


`A - 7 × I` = 
`5``1`
`4``2`
 - 
`7``0`
`0``7`
 = 
`5-7``1`
`4``2-7`
 = 
`-2``1`
`4``-5`


Now, `A^-1 = 1/-6(A-7I)`

`:. A^-1 = ``1/(-6)`
`-2``1`
`4``-5`



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example `[[2,3],[4,10]]`
(Previous example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.