3. Cayley Hamilton method example
( Enter your problem )
|
- Example `[[3,1,1],[-1,2,1],[1,1,1]]`
- Example `[[2,3,1],[0,5,6],[1,1,2]]`
- Example `[[2,3],[4,10]]`
- Example `[[5,1],[4,2]]`
|
Other related methods
- Adjoint method
- Gauss-Jordan Elimination method
- Cayley Hamilton method
|
|
4. Example `[[5,1],[4,2]]`
Find Inverse of matrix using Cayley Hamilton method `A=[[5,1],[4,2]]`
Solution: To apply the Cayley-Hamilton theorem, we first determine the characteristic polynomial p(t) of the matrix A. `|A-tI|`
`=(5-t) × (2-t) - 1 × 4`
`=(10-7t+t^2)-4`
`=t^2-7t+6`
`p(t)=t^2-7t+6`
The Cayley-Hamilton theorem yields that `O = p(A)=A^2-7A+6I`
Rearranging terms, we have `:. -6I = A(A-7I)`
`:. A^-1 = 1/-6(A-7I)`
Now, first we find `A-7I`
Now, `A^-1 = 1/-6(A-7I)`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|