3. Cayley Hamilton method example
( Enter your problem )
|
- Example [[3,1,1],[-1,2,1],[1,1,1]]
- Example [[2,3,1],[0,5,6],[1,1,2]]
- Example [[2,3],[4,10]]
- Example [[5,1],[4,2]]
|
Other related methods
- Adjoint method
- Gauss-Jordan Elimination method
- Cayley Hamilton method
|
|
4. Example [[5,1],[4,2]]
Find Inverse of matrix using Cayley Hamilton method A=[[5,1],[4,2]]Solution:To apply the Cayley-Hamilton theorem, we first determine the characteristic polynomial p(t) of the matrix A. |A-tI|=(5-t) × (2-t) - 1 × 4=(10-7t+t^2)-4=t^2-7t+6p(t)=t^2-7t+6The Cayley-Hamilton theorem yields that O = p(A)=A^2-7A+6IRearranging terms, we have :. -6I = A(A-7I):. A^-1 = 1/-6(A-7I)Now, first we find A-7INow, A^-1 = 1/-6(A-7I)
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|