Home > Matrix & Vector calculators > Inverse of matrix using Cayley Hamilton method example

3. Cayley Hamilton method example ( Enter your problem )
  1. Example [[3,1,1],[-1,2,1],[1,1,1]]
  2. Example [[2,3,1],[0,5,6],[1,1,2]]
  3. Example [[2,3],[4,10]]
  4. Example [[5,1],[4,2]]
Other related methods
  1. Adjoint method
  2. Gauss-Jordan Elimination method
  3. Cayley Hamilton method

3. Example [[2,3],[4,10]]
(Previous example)

4. Example [[5,1],[4,2]]





Find Inverse of matrix using Cayley Hamilton method
A=[[5,1],[4,2]]


Solution:
To apply the Cayley-Hamilton theorem, we first determine the characteristic polynomial p(t) of the matrix A.
|A-tI|

 = 
 (5-t)  1 
 4  (2-t) 


=(5-t) × (2-t) - 1 × 4

=(10-7t+t^2)-4

=t^2-7t+6

p(t)=t^2-7t+6

The Cayley-Hamilton theorem yields that
O = p(A)=A^2-7A+6I

Rearranging terms, we have
:. -6I = A(A-7I)

:. A^-1 = 1/-6(A-7I)

Now, first we find A-7I

7 × I = 7 × 
10
01
 = 
70
07


A - 7 × I = 
51
42
 - 
70
07
 = 
5-71
42-7
 = 
-21
4-5


Now, A^-1 = 1/-6(A-7I)

:. A^-1 = 1/(-6)
-21
4-5



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example [[2,3],[4,10]]
(Previous example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.