Home > Matrix & Vector calculators > Inverse of matrix using Gauss-Jordan Elimination method example

2. Gauss-Jordan Elimination method example ( Enter your problem )
  1. Example `[[3,1,1],[-1,2,1],[1,1,1]]`
  2. Example `[[2,3,1],[0,5,6],[1,1,2]]`
  3. Example `[[2,3],[4,10]]`
  4. Example `[[5,1],[4,2]]`
Other related methods
  1. Adjoint method
  2. Gauss-Jordan Elimination method
  3. Cayley Hamilton method

1. Adjoint method
(Previous method)
2. Example `[[2,3,1],[0,5,6],[1,1,2]]`
(Next example)

1. Example `[[3,1,1],[-1,2,1],[1,1,1]]`





1. Find Inverse of matrix using Gauss-Jordan Elimination method
`A=[[3,1,1],[-1,2,1],[1,1,1]]`


Solution:
Given matrix is
`3``1``1`
`-1``2``1`
`1``1``1`


Now finding inverse of the given matrix
`3``1``1``1``0``0`
`-1``2``1``0``1``0`
`1``1``1``0``0``1`


`R_1 larr R_1-:3`

 = 
 `1` `1=3-:3`
`R_1 larr R_1-:3`
 `1/3` `1/3=1-:3`
`R_1 larr R_1-:3`
 `1/3` `1/3=1-:3`
`R_1 larr R_1-:3`
 `1/3` `1/3=1-:3`
`R_1 larr R_1-:3`
 `0` `0=0-:3`
`R_1 larr R_1-:3`
 `0` `0=0-:3`
`R_1 larr R_1-:3`
`-1``2``1``0``1``0`
`1``1``1``0``0``1`


`R_2 larr R_2+ R_1`

 = 
`1``1/3``1/3``1/3``0``0`
 `0` `0=-1+1`
`R_2 larr R_2+ R_1`
 `7/3` `7/3=2+1/3`
`R_2 larr R_2+ R_1`
 `4/3` `4/3=1+1/3`
`R_2 larr R_2+ R_1`
 `1/3` `1/3=0+1/3`
`R_2 larr R_2+ R_1`
 `1` `1=1+0`
`R_2 larr R_2+ R_1`
 `0` `0=0+0`
`R_2 larr R_2+ R_1`
`1``1``1``0``0``1`


`R_3 larr R_3- R_1`

 = 
`1``1/3``1/3``1/3``0``0`
`0``7/3``4/3``1/3``1``0`
 `0` `0=1-1`
`R_3 larr R_3- R_1`
 `2/3` `2/3=1-1/3`
`R_3 larr R_3- R_1`
 `2/3` `2/3=1-1/3`
`R_3 larr R_3- R_1`
 `-1/3` `-1/3=0-1/3`
`R_3 larr R_3- R_1`
 `0` `0=0-0`
`R_3 larr R_3- R_1`
 `1` `1=1-0`
`R_3 larr R_3- R_1`


`R_2 larr R_2xx3/7`

 = 
`1``1/3``1/3``1/3``0``0`
 `0` `0=0xx3/7`
`R_2 larr R_2xx3/7`
 `1` `1=7/3xx3/7`
`R_2 larr R_2xx3/7`
 `4/7` `4/7=4/3xx3/7`
`R_2 larr R_2xx3/7`
 `1/7` `1/7=1/3xx3/7`
`R_2 larr R_2xx3/7`
 `3/7` `3/7=1xx3/7`
`R_2 larr R_2xx3/7`
 `0` `0=0xx3/7`
`R_2 larr R_2xx3/7`
`0``2/3``2/3``-1/3``0``1`


`R_1 larr R_1-1/3xx R_2`

 = 
 `1` `1=1-1/3xx0`
`R_1 larr R_1-1/3xx R_2`
 `0` `0=1/3-1/3xx1`
`R_1 larr R_1-1/3xx R_2`
 `1/7` `1/7=1/3-1/3xx4/7`
`R_1 larr R_1-1/3xx R_2`
 `2/7` `2/7=1/3-1/3xx1/7`
`R_1 larr R_1-1/3xx R_2`
 `-1/7` `-1/7=0-1/3xx3/7`
`R_1 larr R_1-1/3xx R_2`
 `0` `0=0-1/3xx0`
`R_1 larr R_1-1/3xx R_2`
`0``1``4/7``1/7``3/7``0`
`0``2/3``2/3``-1/3``0``1`


`R_3 larr R_3-2/3xx R_2`

 = 
`1``0``1/7``2/7``-1/7``0`
`0``1``4/7``1/7``3/7``0`
 `0` `0=0-2/3xx0`
`R_3 larr R_3-2/3xx R_2`
 `0` `0=2/3-2/3xx1`
`R_3 larr R_3-2/3xx R_2`
 `2/7` `2/7=2/3-2/3xx4/7`
`R_3 larr R_3-2/3xx R_2`
 `-3/7` `-3/7=-1/3-2/3xx1/7`
`R_3 larr R_3-2/3xx R_2`
 `-2/7` `-2/7=0-2/3xx3/7`
`R_3 larr R_3-2/3xx R_2`
 `1` `1=1-2/3xx0`
`R_3 larr R_3-2/3xx R_2`


`R_3 larr R_3xx7/2`

 = 
`1``0``1/7``2/7``-1/7``0`
`0``1``4/7``1/7``3/7``0`
 `0` `0=0xx7/2`
`R_3 larr R_3xx7/2`
 `0` `0=0xx7/2`
`R_3 larr R_3xx7/2`
 `1` `1=2/7xx7/2`
`R_3 larr R_3xx7/2`
 `-3/2` `-3/2=-3/7xx7/2`
`R_3 larr R_3xx7/2`
 `-1` `-1=-2/7xx7/2`
`R_3 larr R_3xx7/2`
 `7/2` `7/2=1xx7/2`
`R_3 larr R_3xx7/2`


`R_1 larr R_1-1/7xx R_3`

 = 
 `1` `1=1-1/7xx0`
`R_1 larr R_1-1/7xx R_3`
 `0` `0=0-1/7xx0`
`R_1 larr R_1-1/7xx R_3`
 `0` `0=1/7-1/7xx1`
`R_1 larr R_1-1/7xx R_3`
 `1/2` `1/2=2/7-1/7xx-3/2`
`R_1 larr R_1-1/7xx R_3`
 `0` `0=-1/7-1/7xx-1`
`R_1 larr R_1-1/7xx R_3`
 `-1/2` `-1/2=0-1/7xx7/2`
`R_1 larr R_1-1/7xx R_3`
`0``1``4/7``1/7``3/7``0`
`0``0``1``-3/2``-1``7/2`


`R_2 larr R_2-4/7xx R_3`

 = 
`1``0``0``1/2``0``-1/2`
 `0` `0=0-4/7xx0`
`R_2 larr R_2-4/7xx R_3`
 `1` `1=1-4/7xx0`
`R_2 larr R_2-4/7xx R_3`
 `0` `0=4/7-4/7xx1`
`R_2 larr R_2-4/7xx R_3`
 `1` `1=1/7-4/7xx-3/2`
`R_2 larr R_2-4/7xx R_3`
 `1` `1=3/7-4/7xx-1`
`R_2 larr R_2-4/7xx R_3`
 `-2` `-2=0-4/7xx7/2`
`R_2 larr R_2-4/7xx R_3`
`0``0``1``-3/2``-1``7/2`


Solution By Gauss-Jordan Elimination method.
`[[1/2,0,-1/2],[1,1,-2],[-3/2,-1,7/2]]`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Adjoint method
(Previous method)
2. Example `[[2,3,1],[0,5,6],[1,1,2]]`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.