Home > Matrix & Vector calculators > Inverse of matrix using Gauss-Jordan Elimination method example

2. Gauss-Jordan Elimination method example ( Enter your problem )
  1. Example `[[3,1,1],[-1,2,1],[1,1,1]]`
  2. Example `[[2,3,1],[0,5,6],[1,1,2]]`
  3. Example `[[2,3],[4,10]]`
  4. Example `[[5,1],[4,2]]`
Other related methods
  1. Adjoint method
  2. Gauss-Jordan Elimination method
  3. Cayley Hamilton method

3. Example `[[2,3],[4,10]]`
(Previous example)
3. Cayley Hamilton method
(Next method)

4. Example `[[5,1],[4,2]]`





4. Find Inverse of matrix using Gauss-Jordan Elimination method
`A=[[5,1],[4,2]]`


Solution:
Given matrix is
`5``1`
`4``2`


Now finding inverse of the given matrix
`5``1``1``0`
`4``2``0``1`


`R_1 larr R_1-:5`

 = 
`1``(1)/5``(1)/5``0`
`4``2``0``1`


`R_2 larr R_2-4xx R_1`

 = 
`1``(1)/5``(1)/5``0`
`0``(6)/5``(-4)/5``1`


`R_2 larr R_2-:(6)/5`

 = 
`1``(1)/5``(1)/5``0`
`0``1``(-3.3333)/5``0.8333`


`R_1 larr R_1-(1)/5xx R_2`

 = 
`1``0``(41.6667)/125``(-0.8333)/5`
`0``1``(-3.3333)/5``0.8333`


Solution By Gauss Elimination Method
`[[(41.6667)/125,(-0.8333)/5],[(-3.3333)/5,0.8333]]`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example `[[2,3],[4,10]]`
(Previous example)
3. Cayley Hamilton method
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.