Home > Matrix & Vector calculators > Solving systems of linear equations using Gauss-Jordan Elimination method example

3. Gauss-Jordan Elimination method example ( Enter your problem )
  1. Example 2x+5y=21,x+2y=8
  2. Example 2x+5y=16,3x+y=11
  3. Example 2x+3y-z=5,3x+2y+z=10,x-5y+3z=0
  4. Example x+y+z=3,2x-y-z=3,x-y+z=9
Other related methods
  1. Inverse Matrix method
  2. Cramer's Rule method
  3. Gauss-Jordan Elimination method
  4. Gauss Elimination Back Substitution method
  5. Gauss Seidel method
  6. Gauss Jacobi method
  7. Elimination method
  8. LU decomposition using Gauss Elimination method
  9. LU decomposition using Doolittle's method
  10. LU decomposition using Crout's method
  11. Cholesky decomposition method
  12. SOR (Successive over-relaxation) method
  13. Relaxation method

2. Cramer's Rule method
(Previous method)
2. Example 2x+5y=16,3x+y=11
(Next example)

1. Example 2x+5y=21,x+2y=8





1. Solve Equations 2x+5y=21,x+2y=8 using Gauss-Jordan Elimination method

Solution:
Total Equations are 2

2x+5y=21 -> (1)

x+2y=8 -> (2)

Converting given equations into matrix form
2521
128


R_1 larr R_1-:2

 = 
 1 1=2-:2
R_1 larr R_1-:2
 5/2 5/2=5-:2
R_1 larr R_1-:2
 21/2 21/2=21-:2
R_1 larr R_1-:2
128


R_2 larr R_2- R_1

 = 
15/221/2
 0 0=1-1
R_2 larr R_2- R_1
 -1/2 -1/2=2-5/2
R_2 larr R_2- R_1
 -5/2 -5/2=8-21/2
R_2 larr R_2- R_1


R_2 larr R_2xx-2

 = 
15/221/2
 0 0=0xx-2
R_2 larr R_2xx-2
 1 1=-1/2xx-2
R_2 larr R_2xx-2
 5 5=-5/2xx-2
R_2 larr R_2xx-2


R_1 larr R_1-5/2xx R_2

 = 
 1 1=1-5/2xx0
R_1 larr R_1-5/2xx R_2
 0 0=5/2-5/2xx1
R_1 larr R_1-5/2xx R_2
 -2 -2=21/2-5/2xx5
R_1 larr R_1-5/2xx R_2
015


i.e.

x=-2

y=5

Solution By Gauss jordan elimination method.
x = -2

y = 5


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Cramer's Rule method
(Previous method)
2. Example 2x+5y=16,3x+y=11
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.