Solve Equations 2x+3y-z=5,3x+2y+z=10,x-5y+3z=0 using Gauss-Jordan Elimination method
Solution:
Total Equations are `3`
`2x+3y-z=5 -> (1)`
`3x+2y+z=10 -> (2)`
`x-5y+3z=0 -> (3)`
Converting given equations into matrix form
| `2` | `3` | `-1` | | `5` | |
| `3` | `2` | `1` | | `10` | |
| `1` | `-5` | `3` | | `0` | |
`R_1 larr R_1-:2`
= | | `1` | `1.5` | `-0.5` | | `2.5` | | | `3` | `2` | `1` | | `10` | | | `1` | `-5` | `3` | | `0` | |
|
`R_2 larr R_2-3xx R_1`
= | | `1` | `1.5` | `-0.5` | | `2.5` | | | `0` | `-2.5` | `2.5` | | `2.5` | | | `1` | `-5` | `3` | | `0` | |
|
`R_3 larr R_3- R_1`
= | | `1` | `1.5` | `-0.5` | | `2.5` | | | `0` | `-2.5` | `2.5` | | `2.5` | | | `0` | `-6.5` | `3.5` | | `-2.5` | |
|
`R_2 larr R_2xx-0.4`
= | | `1` | `1.5` | `-0.5` | | `2.5` | | | `0` | `1` | `-1` | | `-1` | | | `0` | `-6.5` | `3.5` | | `-2.5` | |
|
`R_1 larr R_1-1.5xx R_2`
= | | `1` | `0` | `1` | | `4` | | | `0` | `1` | `-1` | | `-1` | | | `0` | `-6.5` | `3.5` | | `-2.5` | |
|
`R_3 larr R_3+6.5xx R_2`
= | | `1` | `0` | `1` | | `4` | | | `0` | `1` | `-1` | | `-1` | | | `0` | `0` | `-3` | | `-9` | |
|
`R_3 larr R_3-:-3`
= | | `1` | `0` | `1` | | `4` | | | `0` | `1` | `-1` | | `-1` | | | `0` | `0` | `1` | | `3` | |
|
`R_1 larr R_1- R_3`
= | | `1` | `0` | `0` | | `1` | | | `0` | `1` | `-1` | | `-1` | | | `0` | `0` | `1` | | `3` | |
|
`R_2 larr R_2+ R_3`
= | | `1` | `0` | `0` | | `1` | | | `0` | `1` | `0` | | `2` | | | `0` | `0` | `1` | | `3` | |
|
`i.e.`
`x=1`
`y=2`
`z=3`
Solution By Gauss jordan elimination method
`x=1,y=2 and z=3`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then