Solve Equations 2x+5y=16,3x+y=11 using Gauss Elimination Back Substitution method
Solution:
Total Equations are `2`
`2x+5y=16 -> (1)`
`3x+y=11 -> (2)`
Converting given equations into matrix form
`R_2 larr R_2-3/2xx R_1`
= | | `2` | `5` | | `16` | | | `0` `0=3-3/2xx2` `R_2 larr R_2-3/2xx R_1` | `-13/2` `-13/2=1-3/2xx5` `R_2 larr R_2-3/2xx R_1` | | `-13` `-13=11-3/2xx16` `R_2 larr R_2-3/2xx R_1` | |
|
`i.e.`
`2x+5y=16 ->(1)`
`-13/2y=-13 ->(2)`
Now use back substitution method
From (2)
`-13/2y=-13`
`=>y=-13xx-2/13=2`
From (1)
`2x+5y=16`
`=>2x+5(2)=16`
`=>2x+10=16`
`=>2x=16-10=6`
`=>x=(6)/(2)=3`
Solution using back substitution method.
`x = 3`
`y = 2`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then