Home > Matrix & Vector calculators > Inverse of matrix using Adjoint method example

1. Adjoint method example ( Enter your problem )
  1. Example `[[3,1,1],[-1,2,1],[1,1,1]]`
  2. Example `[[2,3,1],[0,5,6],[1,1,2]]`
  3. Example `[[2,3],[4,10]]`
  4. Example `[[5,1],[4,2]]`
Other related methods
  1. Adjoint method
  2. Gauss-Jordan Elimination method
  3. Cayley Hamilton method

1. Example `[[3,1,1],[-1,2,1],[1,1,1]]`
(Previous example)
3. Example `[[2,3],[4,10]]`
(Next example)

2. Example `[[2,3,1],[0,5,6],[1,1,2]]`





Find Inverse of matrix
`A=[[2,3,1],[0,5,6],[1,1,2]]`


Solution:
`|A|` = 
 `2`  `3`  `1` 
 `0`  `5`  `6` 
 `1`  `1`  `2` 


 =
 `2` × 
 `5`  `6` 
 `1`  `2` 
 `-3` × 
 `0`  `6` 
 `1`  `2` 
 `+1` × 
 `0`  `5` 
 `1`  `1` 


`=2 xx (5 × 2 - 6 × 1) -3 xx (0 × 2 - 6 × 1) +1 xx (0 × 1 - 5 × 1)`

`=2 xx (10 -6) -3 xx (0 -6) +1 xx (0 -5)`

`=2 xx (4) - -3 xx (-6) +1 xx (-5)`

`= 8 +18 -5`

`=21`


`Adj(A)` = 
Adj
`2``3``1`
`0``5``6`
`1``1``2`


 = 
 + 
 `5`  `6` 
 `1`  `2` 
 - 
 `0`  `6` 
 `1`  `2` 
 + 
 `0`  `5` 
 `1`  `1` 
 - 
 `3`  `1` 
 `1`  `2` 
 + 
 `2`  `1` 
 `1`  `2` 
 - 
 `2`  `3` 
 `1`  `1` 
 + 
 `3`  `1` 
 `5`  `6` 
 - 
 `2`  `1` 
 `0`  `6` 
 + 
 `2`  `3` 
 `0`  `5` 
T


 = 
`+(5 × 2 - 6 × 1)``-(0 × 2 - 6 × 1)``+(0 × 1 - 5 × 1)`
`-(3 × 2 - 1 × 1)``+(2 × 2 - 1 × 1)``-(2 × 1 - 3 × 1)`
`+(3 × 6 - 1 × 5)``-(2 × 6 - 1 × 0)``+(2 × 5 - 3 × 0)`
T


 = 
`+(10 -6)``-(0 -6)``+(0 -5)`
`-(6 -1)``+(4 -1)``-(2 -3)`
`+(18 -5)``-(12 +0)``+(10 +0)`
T


 = 
`4``6``-5`
`-5``3``1`
`13``-12``10`
T


 = 
`4``-5``13`
`6``3``-12`
`-5``1``10`


`"Now, "A^(-1)=1/|A| × Adj(A)`

 = `1/(21)` ×
`4``-5``13`
`6``3``-12`
`-5``1``10`


 = 
`4/21``-5/21``13/21`
`2/7``1/7``-4/7`
`-5/21``1/21``10/21`



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Example `[[3,1,1],[-1,2,1],[1,1,1]]`
(Previous example)
3. Example `[[2,3],[4,10]]`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.