Home > Matrix & Vector calculators > Solving systems of linear equations using Relaxation method example

13. Relaxation method example ( Enter your problem )
  1. Example `8x+y+z=8,2x+4y+z=4,x+3y+5z=5`
  2. Example `10x-2y-2z=6,-x+10y-2z=7,-x-y+10z=8`
  3. Example `9x-2y+z=50,x+5y-3z=18,-2x+2y+7z=19`
  4. Example `10x-2y-3z=205,-2x+10y-2z=154,-2x-y+10z=120`
Other related methods
  1. Inverse Matrix method
  2. Cramer's Rule method
  3. Gauss-Jordan Elimination method
  4. Gauss Elimination Back Substitution method
  5. Gauss Seidel method
  6. Gauss Jacobi method
  7. Elimination method
  8. LU decomposition using Gauss Elimination method
  9. LU decomposition using Doolittle's method
  10. LU decomposition using Crout's method
  11. Cholesky decomposition method
  12. SOR (Successive over-relaxation) method
  13. Relaxation method

1. Example `8x+y+z=8,2x+4y+z=4,x+3y+5z=5`
(Previous example)
3. Example `9x-2y+z=50,x+5y-3z=18,-2x+2y+7z=19`
(Next example)

2. Example `10x-2y-2z=6,-x+10y-2z=7,-x-y+10z=8`





Solve Equations 10x-2y-2z=6,-x+10y-2z=7,-x-y+10z=8 using Relaxation method

Solution:
Total Equations are `3`

`10x-2y-2z=6`

`-x+10y-2z=7`

`-x-y+10z=8`


The residuals from equations, we get
`R_1=6-10x+2y+2z`

`R_2=7+x-10y+2z`

`R_3=8+x+y-10z`

The table for operation is
`R_1``R_2``R_3`
`deltax`-1011
`deltay`2-101
`deltaz`22-10


Solution steps are
`1^(st)` Approximation

`R_1=6-0=6`

`R_2=7-0=7`

`R_3=8-0=8`

Maximum is `R_3=8`

`deltaz=8/10=0.8`

`2^(nd)` Approximation

`R_1=6-(-2)*0.8=6--1.6=7.6`

`R_2=7-(-2)*0.8=7--1.6=8.6`

`R_3=8-10*0.8=8-8=0`

Maximum is `R_2=8.6`

`deltay=8.6/10=0.86`

`3^(rd)` Approximation

`R_1=7.6-(-2)*0.86=7.6--1.72=9.32`

`R_2=8.6-10*0.86=8.6-8.6=0`

`R_3=0-(-1)*0.86=0--0.86=0.86`

Maximum is `R_1=9.32`

`deltax=9.32/10=0.932`

`4^(th)` Approximation

`R_1=9.32-10*0.932=9.32-9.32=0`

`R_2=0-(-1)*0.932=0--0.932=0.932`

`R_3=0.86-(-1)*0.932=0.86--0.932=1.792`

Maximum is `R_3=1.792`

`deltaz=1.792/10=0.1792`

`5^(th)` Approximation

`R_1=0-(-2)*0.1792=0--0.3584=0.3584`

`R_2=0.932-(-2)*0.1792=0.932--0.3584=1.2904`

`R_3=1.792-10*0.1792=1.792-1.792=0`

Maximum is `R_2=1.2904`

`deltay=1.2904/10=0.129`

`6^(th)` Approximation

`R_1=0.3584-(-2)*0.129=0.3584--0.2581=0.6165`

`R_2=1.2904-10*0.129=1.2904-1.2904=0`

`R_3=0-(-1)*0.129=0--0.129=0.129`

Maximum is `R_1=0.6165`

`deltax=0.6165/10=0.0616`

`7^(th)` Approximation

`R_1=0.6165-10*0.0616=0.6165-0.6165=0`

`R_2=0-(-1)*0.0616=0--0.0616=0.0616`

`R_3=0.129-(-1)*0.0616=0.129--0.0616=0.1907`

Maximum is `R_3=0.1907`

`deltaz=0.1907/10=0.0191`

`8^(th)` Approximation

`R_1=0-(-2)*0.0191=0--0.0381=0.0381`

`R_2=0.0616-(-2)*0.0191=0.0616--0.0381=0.0998`

`R_3=0.1907-10*0.0191=0.1907-0.1907=0`

Maximum is `R_2=0.0998`

`deltay=0.0998/10=0.01`

`9^(th)` Approximation

`R_1=0.0381-(-2)*0.01=0.0381--0.02=0.0581`

`R_2=0.0998-10*0.01=0.0998-0.0998=0`

`R_3=0-(-1)*0.01=0--0.01=0.01`

Maximum is `R_1=0.0581`

`deltax=0.0581/10=0.0058`

`10^(th)` Approximation

`R_1=0.0581-10*0.0058=0.0581-0.0581=0`

`R_2=0-(-1)*0.0058=0--0.0058=0.0058`

`R_3=0.01-(-1)*0.0058=0.01--0.0058=0.0158`

Maximum is `R_3=0.0158`

`deltaz=0.0158/10=0.0016`

`11^(th)` Approximation

`R_1=0-(-2)*0.0016=0--0.0032=0.0032`

`R_2=0.0058-(-2)*0.0016=0.0058--0.0032=0.009`

`R_3=0.0158-10*0.0016=0.0158-0.0158=0`

Maximum is `R_2=0.009`

`deltay=0.009/10=0.0009`

`12^(th)` Approximation

`R_1=0.0032-(-2)*0.0009=0.0032--0.0018=0.005`

`R_2=0.009-10*0.0009=0.009-0.009=0`

`R_3=0-(-1)*0.0009=0--0.0009=0.0009`

Maximum is `R_1=0.005`

`deltax=0.005/10=0.0005`

`13^(th)` Approximation

`R_1=0.005-10*0.0005=0.005-0.005=0`

`R_2=0-(-1)*0.0005=0--0.0005=0.0005`

`R_3=0.0009-(-1)*0.0005=0.0009--0.0005=0.0014`

Maximum is `R_3=0.0014`

`deltaz=0.0014/10=0.0001`


Solution By Relaxation Method.
`x=sum deltax=1~=1`

`y=sum deltay=0.9999~=1`

`z=sum deltaz=1~=1`

Iterations are tabulated as below
IterationOperation`deltax`
(10)
`deltay`
(10)
`deltaz`
(10)
`R_1``R_2``R_3`
1`x=y=z=0`000678
2`deltaz=8/10=0.8`000.87.68.60
3`deltay=8.6/10=0.86`00.8609.3200.86
4`deltax=9.32/10=0.932`0.9320000.9321.792
5`deltaz=1.792/10=0.1792`000.17920.35841.29040
6`deltay=1.2904/10=0.129`00.12900.616500.129
7`deltax=0.6165/10=0.0616`0.06160000.06160.1907
8`deltaz=0.1907/10=0.0191`000.01910.03810.09980
9`deltay=0.0998/10=0.01`00.0100.058100.01
10`deltax=0.0581/10=0.0058`0.00580000.00580.0158
11`deltaz=0.0158/10=0.0016`000.00160.00320.0090
12`deltay=0.009/10=0.0009`00.000900.00500.0009
13`deltax=0.005/10=0.0005`0.00050000.00050.0014
Total10.99991



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Example `8x+y+z=8,2x+4y+z=4,x+3y+5z=5`
(Previous example)
3. Example `9x-2y+z=50,x+5y-3z=18,-2x+2y+7z=19`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.