Home > Statistical Methods calculators > Fitting second degree parabola - Curve fitting example

2. Fitting second degree parabola - Curve fitting example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
Other related methods
  1. Straight line (y = a + bx)
  2. Second degree parabola `(y = a + bx + cx^2)`
  3. Cubic equation `(y = a + bx + cx^2 + dx^3)`
  4. Exponential equation `(y=ae^(bx))`
  5. Exponential equation `(y=ab^x)`
  6. Exponential equation `(y=ax^b)`

1. Straight line (y = a + bx)
(Previous method)
2. Example-2
(Next example)

1. Formula & Example-1





Formula
The equation is `y = a + bx + cx^2` and the normal equations are
1. `sum y = an + b sum x + c sum x^2`
2. `sum xy = a sum x + b sum x^2 + c sum x^3`
3. `sum x^2y = a sum x^2 + b sum x^3 + c sum x^4`

Examples
1. Calculate Fitting second degree parabola - Curve fitting using Least square method
XY
1-5
2-2
35
416
531
650
773


Solution:
The equation is `y = a + bx + cx^2` and the normal equations are

`sum y = an + b sum x + c sum x^2`

`sum xy = a sum x + b sum x^2 + c sum x^3`

`sum x^2y = a sum x^2 + b sum x^3 + c sum x^4`


The values are calculated using the following table
`x``y``x^2``x^3``x^4``x*y``x^2*y`
1-5111-5-5
2-24816-4-8
35927811545
416166425664256
53125125625155775
6503621612963001800
7734934324015113577
---------------------
`sum x=28``sum y=168``sum x^2=140``sum x^3=784``sum x^4=4676``sum x*y=1036``sum x^2*y=6440`


Substituting these values in the normal equations
`7a+28b+140c=168`

`28a+140b+784c=1036`

`140a+784b+4676c=6440`


Solving these 3 equations,
Total Equations are `3`

`7a+28b+140c=168 -> (1)`

`28a+140b+784c=1036 -> (2)`

`140a+784b+4676c=6440 -> (3)`



Select the equations `(1)` and `(2)`, and eliminate the variable `a`.

`7a+28b+140c=168`` xx 4->````28a``+``112b``+``560c``=``672```
`28a+140b+784c=1036`` xx 1->````28a``+``140b``+``784c``=``1036```

`-``28b``-``224c``=``-364`` -> (4)`




Select the equations `(1)` and `(3)`, and eliminate the variable `a`.

`7a+28b+140c=168`` xx 20->````140a``+``560b``+``2800c``=``3360```
`140a+784b+4676c=6440`` xx 1->````140a``+``784b``+``4676c``=``6440```

`-``224b``-``1876c``=``-3080`` -> (5)`




Select the equations `(4)` and `(5)`, and eliminate the variable `b`.

`-28b-224c=-364`` xx 8->``-``224b``-``1792c``=``-2912```
`-224b-1876c=-3080`` xx 1->``-``224b``-``1876c``=``-3080```

```84c``=``168`` -> (6)`




Now use back substitution method
From (6)
`84c=168`

`=>c=(168)/(84)=2`

From (4)
`-28b-224c=-364`

`=>-28b-224(2)=-364`

`=>-28b-448=-364`

`=>-28b=-364+448=84`

`=>b=(84)/(-28)=-3`

From (1)
`7a+28b+140c=168`

`=>7a+28(-3)+140(2)=168`

`=>7a+196=168`

`=>7a=168-196=-28`

`=>a=(-28)/(7)=-4`

Solution using Elimination method.
`a=-4,b=-3,c=2`

Now substituting this values in the equation is `y = a + bx + cx^2`, we get

`y = -4 -3x+2x^2`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Straight line (y = a + bx)
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.