Home > Statistical Methods calculators > Fitting exponential equation (y=ae^bx) - Curve fitting example

4. Fitting exponential equation (y=ae^bx) - Curve fitting example ( Enter your problem )
  1. Formula & Examples (taking log)
  2. Formula & Examples (taking ln)
Other related methods
  1. Straight line (y = a + bx)
  2. Second degree parabola `(y = a + bx + cx^2)`
  3. Cubic equation `(y = a + bx + cx^2 + dx^3)`
  4. Exponential equation `(y=ae^(bx))`
  5. Exponential equation `(y=ab^x)`
  6. Exponential equation `(y=ax^b)`

3. Cubic equation `(y = a + bx + cx^2 + dx^3)`
(Previous method)
2. Formula & Examples (taking ln)
(Next example)

1. Formula & Examples (taking log)





Formula
The exponential equation is `y=ae^(bx)`
taking logarithm on both sides, we get

`log_(10)y=log_(10)(ae^(bx))`

`log_(10)y=log_(10)a+log_(10)e^(bx)`

`log_(10)y=log_(10)a+bx log_(10)e`

`Y=A+Bx` where `Y=log_(10)y, A=log_(10)a, B=blog_(10)e`

which linear in Y,x

So the corresponding normal equations are

`sum Y = nA + B sum x`

`sum xY = A sum x + B sum x^2`

Examples
1. Calculate Fitting exponential equation `(y=ae^(bx))` - Curve fitting using Least square method
XY
00.10
0.50.45
12.15
1.59.15
240.35
2.5180.75


Solution:
The curve to be fitted is `y=ae^(bx)`

taking logarithm on both sides, we get
`log_(10)y=log_(10)a+bx log_(10)e`

`Y=A+Bx` where `Y=log_(10)y, A=log_(10)a, B=blog_(10)e`

which linear in Y,x
So the corresponding normal equations are
`sum Y = nA + B sum x`

`sum xY = A sum x + B sum x^2`


The values are calculated using the following table
`x``y``Y=log_(10)(y)``x^2``x*Y`
00.1-100
0.50.45-0.34680.25-0.1734
12.150.332410.3324
1.59.150.96142.251.4421
240.351.605843.2117
2.5180.752.25716.255.6427
---------------
`sum x=7.5``sum y=232.95``sum Y=3.81``sum x^2=13.75``sum x*Y=10.4556`


Substituting these values in the normal equations
`6A+7.5B=3.81`

`7.5A+13.75B=10.4556`


Solving these two equations using Elimination method,

`6a+7.5b=3.81`

and `7.5a+13.75b=10.4556`

`:.7.5a+13.75b=10.46`

`6a+7.5b=3.81 ->(1)`

`7.5a+13.75b=10.4556 ->(2)`

equation`(1) xx 7.5 =>45a+56.25b=28.575`

equation`(2) xx 6 =>45a+82.5b=62.7336`

Substracting `=>-26.25b=-34.1586`

`=>26.25b=34.1586`

`=>b=34.1586/26.25`

`=>b=1.30128`

Putting `b=1.30128` in equation `(1)`, we have

`6a+7.5(1.30128)=3.81`

`=>6a=3.81-9.7596`

`=>6a=-5.9496`

`=>a=-5.9496/6`

`=>a=-0.9916`

`:. a=-0.9916" and "b=1.30128`


we obtain `A=-0.9916,B=1.3013`

`:. a=antilog_10(A)=antilog_10(-0.9916)=0.102`

and `b=B/log_10(e)=(1.3013)/(0.4343)=2.9963`

Now substituting this values in the equation is `y = a e^(bx)`, we get

`y = 0.102 e^(2.9963x)`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Cubic equation `(y = a + bx + cx^2 + dx^3)`
(Previous method)
2. Formula & Examples (taking ln)
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.