Home > Statistical Methods calculators > Fitting exponential equation (y=ae^bx) - Curve fitting example

4. Fitting exponential equation (y=ae^bx) - Curve fitting example ( Enter your problem )
  1. Formula & Examples (taking log)
  2. Formula & Examples (taking ln)
Other related methods
  1. Straight line (y = a + bx)
  2. Second degree parabola `(y = a + bx + cx^2)`
  3. Cubic equation `(y = a + bx + cx^2 + dx^3)`
  4. Exponential equation `(y=ae^(bx))`
  5. Exponential equation `(y=ab^x)`
  6. Exponential equation `(y=ax^b)`

1. Formula & Examples (taking log)
(Previous example)
5. Exponential equation `(y=ab^x)`
(Next method)

2. Formula & Examples (taking ln)





Formula
The exponential equation is `y=ae^(bx)`
taking natural logarithm on both sides, we get

`ln(y)=ln(ae^(bx))`

`ln(y)=ln(a)+ln(e^(bx))`

`ln(y)=ln(a)+bx ln(e)`

`Y=A+Bx` where `Y=ln(y), A=ln(a), B=bln(e)`

which linear in Y,x

So the corresponding normal equations are

`sum Y = nA + B sum x`

`sum xY = A sum x + B sum x^2`

Examples
1. Calculate Fitting exponential equation `(y=ae^bx)` - Curve fitting using Least square method
XY
00.10
0.50.45
12.15
1.59.15
240.35
2.5180.75



Solution:
The curve to be fitted is `y=ae^(bx)`

taking logarithm on both sides, we get
`ln(y)=ln(a)+bx ln(e)`

`Y=A+Bx` where `Y=ln(y), A=ln(a), B=bln(e)`

which linear in Y,x
So the corresponding normal equations are
`sum Y = nA + B sum x`

`sum xY = A sum x + B sum x^2`


The values are calculated using the following table
`x``y``Y=ln(y)``x^2``x*Y`
00.1-2.302600
0.50.45-0.79850.25-0.3993
12.150.765510.7655
1.59.152.21382.253.3206
240.353.697647.3952
2.5180.755.19716.2512.9928
---------------
`sum x=7.5``sum y=232.95``sum Y=8.7728``sum x^2=13.75``sum x*Y=24.0748`


Substituting these values in the normal equations
`6A+7.5B=8.7728`

`7.5A+13.75B=24.0748`


Solving these two equations using Elimination method,

`6a+7.5b=8.7728`

and `7.5a+13.75b=24.0748`

`:.7.5a+13.75b=24.07`

`6a+7.5b=8.7728 ->(1)`

`7.5a+13.75b=24.0748 ->(2)`

equation`(1) xx 7.5 =>45a+56.25b=65.796`

equation`(2) xx 6 =>45a+82.5b=144.4488`

Substracting `=>-26.25b=-78.6528`

`=>26.25b=78.6528`

`=>b=78.6528/26.25`

`=>b=2.996297`

Putting `b=2.996297` in equation `(1)`, we have

`6a+7.5(2.996297)=8.7728`

`=>6a=8.7728-22.472229`

`=>6a=-13.699429`

`=>a=-13.699429/6`

`=>a=-2.283238`

`:.a=-2.283238" and "b=2.996297`


we obtain `A=-2.2832,B=2.9963`

`:. a=antiln(A)=antiln(-2.2832)=0.102`

and `b=B/ln(e)=(2.9963)/(1)=2.9963`

Now substituting this values in the equation is `y = a e^(bx)`, we get

`y=0.102*e^(2.9963x)`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Examples (taking log)
(Previous example)
5. Exponential equation `(y=ab^x)`
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.