Home > Statistical Methods calculators > Fitting exponential equation (y=ax^b) - Curve fitting example

6. Fitting exponential equation (y=ax^b) - Curve fitting example ( Enter your problem )
  1. Formula & Examples (taking log)
  2. Formula & Examples (taking ln)
Other related methods
  1. Straight line (y = a + bx)
  2. Second degree parabola `(y = a + bx + cx^2)`
  3. Cubic equation `(y = a + bx + cx^2 + dx^3)`
  4. Exponential equation `(y=ae^(bx))`
  5. Exponential equation `(y=ab^x)`
  6. Exponential equation `(y=ax^b)`

5. Exponential equation `(y=ab^x)`
(Previous method)
2. Formula & Examples (taking ln)
(Next example)

1. Formula & Examples (taking log)





Formula
The exponential equation is `y=ax^b`
taking logarithm on both sides, we get

`log_(10)y=log_(10)(ax^b)`

`log_(10)y=log_(10)a+log_(10)(x^b)`

`log_(10)y=log_(10)a+b log_(10)x`

`Y=A+bX` where `Y=log_(10)y, A=log_(10)a, X=log_(10)x`

which linear in Y,X

So the corresponding normal equations are

`sum Y = nA + b sum X`

`sum XY = A sum X + b sum X^2`

Examples
1. Calculate Fitting exponential equation `(y=ax^b)` - Curve fitting using Least square method
XY
227.8
362.1
4110
5161


Solution:
The curve to be fitted is `y=ax^b`

taking logarithm on both sides, we get
`log_(10)y=log_(10)a+b log_(10)x`

`Y=A+bX` where `Y=log_(10)y, A=log_(10)a, X=log_(10)x`

which linear in Y,X
So the corresponding normal equations are
`sum Y = nA + b sum X`

`sum XY = A sum X + b sum X^2`


The values are calculated using the following table
`x``y``X=log_(10)(x)``Y=log_(10)(y)``X^2``X*Y`
227.80.3011.4440.09060.4347
362.10.47711.79310.22760.8555
41100.60212.04140.36251.229
51610.6992.20680.48861.5425
------------------
`sum x=14``sum y=360.9``sum X=2.0792``sum Y=7.4854``sum X^2=1.1693``sum X*Y=4.0618`


Substituting these values in the normal equations
`4A+2.0792b=7.4854`

`2.0792A+1.1693b=4.0618`


Solving these two equations using Elimination method,

`4a+2.0792b=7.4854`

`:.4a+2.08b=7.49`

and `2.0792a+1.1693b=4.0618`

`:.2.08a+1.17b=4.06`

`4a+2.0792b=7.4854 ->(1)`

`2.0792a+1.1693b=4.0618 ->(2)`

equation`(1) xx 1.1693 =>4.6772a+2.431209b=8.752678`

equation`(2) xx 2.0792 =>4.323073a+2.431209b=8.445295`

Substracting `=>0.354127a=0.307384`

`=>a=0.307384/0.354127`

`=>a=0.868003`

Putting `a=0.868003` in equation `(2)`, we have

`2.0792(0.868003)+1.1693b=4.0618`

`=>1.1693b=4.0618-1.804752`

`=>1.1693b=2.257048`

`=>b=2.257048/1.1693`

`=>b=1.930256`

`:. a=0.868003" and "b=1.930256`


we obtain `A=0.868,b=1.9303`

`:. a=antilog_10(A)=antilog_10(0.868)=7.3791`

Now substituting this values in the equation is `y = a x^b`, we get

`y = 7.3791 * x^(1.9303)`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



5. Exponential equation `(y=ab^x)`
(Previous method)
2. Formula & Examples (taking ln)
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.