Home > Statistical Methods calculators > Median test example

5. Non parametric test - Median test example ( Enter your problem )
  1. Example-1
  2. Example-2
Other related methods
  1. Non parametric test - Sign test
  2. Non parametric test - Mann whitney U test
  3. Non parametric test - Kruskal-wallis test
  4. Non parametric test - Chi square test
  5. Non parametric test - Median test
  6. Non parametric test - Mood's Median test
  7. Parametric test - F test
  8. Parametric test - t-test
  9. Parametric test - Standard error

4. Non parametric test - Chi square test
(Previous method)
2. Example-2
(Next example)

1. Example-1





1. Non parametric test - Median test for the following data
79,86,40,50,75,38,70,73,50,40,20,80,55,61,50,80,60,30,70,50
85,80,50,55,65,50,63,75,55,45,30,85,65,80,55,75,65,50,75,62, Significance Level `alpha=0.05` and One-tailed test


Solution:
Step-1:State the hypothesis
`H_0`: There is no difference between Sample A and Sample B.

`H_1`: There is difference between Sample A and Sample B.


Step-2: Ranking all Sample values
First we assign ranks to all observations using high to low ranking process in the combined sample.
Size in Descending OrderRankName of related sample
A for sample1, B for sample2
Rank for ARank for B
861A1
852.5B2.5
852.5B2.5
805.5A5.5
805.5A5.5
805.5B5.5
805.5B5.5
798A8
7510.5A10.5
7510.5B10.5
7510.5B10.5
7510.5B10.5
7313A13
7014.5A14.5
7014.5A14.5
6517B17
6517B17
6517B17
6319B19
6220B20
6121A21
6022A22
5524.5A24.5
5524.5B24.5
5524.5B24.5
5524.5B24.5
5030A30
5030A30
5030A30
5030A30
5030B30
5030B30
5030B30
4534B34
4035.5A35.5
4035.5A35.5
3837A37
3038.5A38.5
3038.5B38.5
2040A40
Total446.5373.5

Step-3: Find Grand Median
Median `= (20^(th) "term" + 21^(st) "term" )/2=(62 + 61)/2= 61.5`


Sample ASample BTotal
`>` Median8(a)12(b)20(a+b)
`<=` Median12(c)8(d)20(c+d)
Total20(a+c)20(b+d)40(a+b+c+d)=n


Step-4: Computation of test statistic
`chi^2=(n(|ad-bc|-n/2)^2)/((a+b)(c+d)(a+c)(b+d))`

`chi^2=(40(|64-144|-40/2)^2)/(20xx20xx2020)`

`=(40(80-20)^2)/(20xx20xx20xx20)`

`=0.9`

Step-5: Compute the degrees of freedom (df).
`df=2-1=1`

Step-6:
The Critical value of chi-square is `chi^2(0.05,1)=3.8415`

Since the computed `chi^2`(0.9) < critical `chi^2`(3.8415)

So we accept the null hypothesis (`H_0`) and conclude that the two samples are identical.


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Non parametric test - Chi square test
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.