Home > Statistical Methods calculators > Sign test example

1. Non parametric test - Sign test example ( Enter your problem )
  1. Example-1
  2. Example-2
Other related methods
  1. Non parametric test - Sign test
  2. Non parametric test - Mann whitney U test
  3. Non parametric test - Kruskal-wallis test
  4. Non parametric test - Chi square test
  5. Non parametric test - Median test
  6. Non parametric test - Mood's Median test
  7. Parametric test - F test
  8. Parametric test - t-test
  9. Parametric test - Standard error

2. Example-2
(Next example)

1. Example-1





1. Non parametric test - Sign test for the following data
7,5,2,3,8,2,4,4,3,7,6,2,10
2,1,0,1,3,2,3,5,1,4,4,3,4, Significance Level `alpha=0.05` and One-tailed test


Solution:
Step-1: The sign test with the null hypothesis:
`H_0: p=0.50`.

`H_1: p!=0.50`.

Step-2: In 4th column, we put + if difference is positive, - if difference is negative and n/a if difference is zero.
#ABSign
172+
251+
320+
431+
583+
622n/a
743+
845-
931+
1074+
1164+
1223-
13104+

To perform the test, we count number of + sign and number of - sign.
Number of plus sign = 10
Number of minus sign = 2
n = 10 + 2 = 12
`mu=np=12xx0.5=6`

`sigma=sqrt(npq)=sqrt(12xx0.5xx0.5)=sqrt(3)=1.7321`

Applying the z-test statistic, we get
`z=(bar x-mu)/(sigma)=(10-6)/(1.7321)=2.3094`

Step-3:
At `alpha=0.05`, the critical value of `Z_(0.05)=1.6449`

As calculated `z=2.3094 > 1.6449`

So, `H_0` is rejected.


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.