Home > Numerical methods calculators > Numerical Differentiation using Newton's Backward Difference formula example

3. Newton's Backward Difference formula (Numerical Differentiation) example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (table data)
  3. Example-3 (`f(x)=2x^3-4x+1`)
  4. Example-4 (`f(x)=x^3+x+2`)
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference formula
  4. Lagrange's formula
  5. Stirling's formula
  6. Bessel's formula

1. Newton's Forward Difference formula
(Previous method)
2. Example-2 (table data)
(Next example)

1. Formula & Example-1 (table data)





Formula
1. For `x=x_n`
`[(dy)/(dx)]_(x=x_n) = 1/h * (grad Y_n + 1/2 * grad^2 Y_n + 1/3 * grad^3 Y_n + 1/4 * grad^4 Y_n + ...)`
`[(d^2y)/(dx^2)]_(x=x_n) = 1/h^2 * (grad^2 Y_n + grad^3 Y_n + 11/12 * grad^4 Y_n + ...)`
2. For any value of `x`
`[(dy)/(dx)] = 1/h * (grad Y_n + (2t+1)/2 * grad^2 Y_n + (3t^2+6t+2)/6 * grad^3 Y_n + (4t^3+18t^2+22t+6)/24 * grad^4 Y_n + ...)`
`[(d^2y)/(dx^2)] = 1/h^2 * (grad^2 Y_n + (t+1) * grad^3 Y_n + (12t^2+36t+22)/24 * grad^4 Y_n + ...)`

Examples
1. Using Newton's Backward Difference formula to find solution
xf(x)
1.44.0552
1.64.9530
1.86.0496
2.07.3891
2.29.0250

x = 2.2


Solution:
Numerical differentiation method to find solution.
The value of table for `x` and `y`

x1.41.61.822.2
y4.05524.9536.04967.38919.025

Newton's backward differentiation table is
xy`grady``grad^2y``grad^3y``grad^4y`
1.44.0552
0.8978
1.64.9530.1988
1.09660.0441
1.86.04960.24290.0094
1.33950.0535
27.38910.2964
1.6359
2.29.025


The value of x at you want to find `f(x) : x_n = 2.2`

`h = x_1 - x_0 = 1.6 - 1.4 = 0.2`


`[(dy)/(dx)]_(x=x_n) = 1/h * (grad y_n + 1/2 * grad^2 y_n + 1/3 * grad^3 y_n + 1/4 * grad^4 y_n)`

`:.[(dy)/(dx)]_(x=2.2) = 1/0.2 xx (1.6359 + 1/2 xx 0.2964 + 1/3 xx 0.0535 + 1/4 xx 0.0094)`

`:.[(dy)/(dx)]_(x=2.2) = 9.02142`


`[(d^2y)/(dx^2)]_(x=x_n) = 1/h^2 * (grad^2 y_n + grad^3 y_n + 11/12 * grad^4 y_n)`

`:.[(d^2y)/(dx^2)]_(x=2.2) = 1/0.04 * (0.2964 + 0.0535 + 11/12 xx 0.0094)`

`:.[(d^2y)/(dx^2)]_(x=2.2) = 8.96292`


`:.` `Pn'(2.2) = 9.02142` and `Pn''(2.2) = 8.96292`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Newton's Forward Difference formula
(Previous method)
2. Example-2 (table data)
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.