Home > Numerical methods calculators > Numerical Differentiation using Bessel's formula example

7. Bessel's formula (Numerical Differentiation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference formula
  4. Lagrange's formula
  5. Stirling's formula
  6. Bessel's formula

5. Stirling's formula
(Previous method)
2. Example-2
(Next example)

1. Formula & Example-1





Formula
1. For `x=x_0`
`[(dy)/(dx)]_(x=x_0) = 1/h * [Delta y_0 - 1/4 * (Delta^2 y_(0) + Delta^2 y_(-1)) + 1/12 Delta^3 y_(-1) + 1/24 * (Delta^4 y_(-1) + Delta^4 y_(-2)) - 1/120 Delta^5 y_(-2) - 1/120 * (Delta^6 y_(-2) + Delta^6 y_(-3)) + ...]`
`[(d^2y)/(dx^2)]_(x=x_0) = 1/h^2 * [1/2 * (Delta^2 y_(0) + Delta^2 y_(-1)) - 1/2 Delta^3 y_(-1) - 1/24 * (Delta^4 y_(-1) + Delta^4 y_(-2)) + ...]`

Examples
1. Using Bessel's formula to find solution
xf(x)
7.470.193
7.480.195
7.490.198
7.500.201
7.510.203
7.520.206
7.530.208

x = 7.5


Solution:
Bessel's formula (central difference formula).
The value of table for `x` and `y`

x7.477.487.497.57.517.527.53
y0.1930.1950.1980.2010.2030.2060.208

Difference table is
xy`Deltay``Delta^2y``Delta^3y``Delta^4y``Delta^5y``Delta^6y`
7.470.193
0.002
7.480.1950.001
0.003-0.001
7.490.19800
0.003-0.0010.003
7.50.201-0.0010.003-0.01
0.0020.002-0.007
7.510.2030.001-0.004
0.003-0.002
7.520.206-0.001
0.002
7.530.208


The value of `x` at you want to find `f(x) : x_0 = 7.5`

`h = x_1 - x_0 = 7.48 - 7.47 = 0.01`


Bessel's Formula is
`[(dy)/(dx)]_(x=x_0) = 1/h * [Delta y_0 - 1/4 * (Delta^2 y_(0) + Delta^2 y_(-1)) + 1/12 Delta^3 y_(-1) + 1/24 * (Delta^4 y_(-1) + Delta^4 y_(-2)) - 1/120 Delta^5 y_(-2) - 1/120 * (Delta^6 y_(-2) + Delta^6 y_(-3)) + ...]`

`:.[(dy)/(dx)]_(x=7.5) = 1/0.01 * [0.002 - 1/4 * (0.001 -0.001) + 1/12 * (0.002) + 1/24 * (-0.004 +0.003) - 1/120 * (-0.007) - 1/120 * (0 -0.01) + ...]`

`:.[(dy)/(dx)]_(x=7.5) = 1/0.01 * [0.002+0+0.0001666667-0.0000416667+0.0000583333+0.0000833333]`

`:.[(dy)/(dx)]_(x=7.5) = 0.2267`


`[(d^2y)/(dx^2)]_(x=x_0) = 1/h^2 * [1/2 * (Delta^2 y_(0) + Delta^2 y_(-1)) - 1/3 Delta^3 y_(-1) - 1/24 * (Delta^4 y_(-1) + Delta^4 y_(-2)) + 1/24 Delta^5 y_(-2) + 1/180 * (Delta^6 y_(-2) + Delta^6 y_(-3)) + ...]`

`:.[(d^2y)/(dx^2)]_(x=7.5) = 1/0.0001 * [1/2 * (0.001 -0.001) - 1/2 * (0.002) - 1/24 * (-0.004 +0.003) + 1/24 * (-0.007) + 1/180 * (0 -0.01)]`

`:.[(d^2y)/(dx^2)]_(x=7.5) = 1/0.0001 * [0-0.001+0.0000416667-0.0002916667-0.0000555556]`

`:.[(d^2y)/(dx^2)]_(x=7.5) = -13.0556`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



5. Stirling's formula
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.