Using Newton's Forward Difference formula to find solution
x | f(x) |
0.0 | 1.0000 |
0.1 | 0.9975 |
0.2 | 0.9900 |
0.3 | 0.9776 |
0.4 | 0.8604 |
x = 0.1
Solution:
Numerical differentiation method to find solution.
The value of table for `x` and `y`
x | 0 | 0.1 | 0.2 | 0.3 | 0.4 |
---|
y | 1 | 0.9975 | 0.99 | 0.9776 | 0.8604 |
---|
Newton's forward differentiation table is
x | y | `Deltay` | `Delta^2y` | `Delta^3y` | `Delta^4y` |
0 | 1 | | | | |
| | -0.0025 | | | |
0.1 | 0.9975 | | -0.005 | | |
| | -0.0075 | | 0.0001 | |
0.2 | 0.99 | | -0.0049 | | -0.1 |
| | -0.0124 | | -0.0999 | |
0.3 | 0.9776 | | -0.1048 | | |
| | -0.1172 | | | |
0.4 | 0.8604 | | | | |
The value of `x` at you want to find `f(x) : x_1 = 0.1`
`h = x_1 - x_0 = 0.1 - 0 = 0.1`
`[(dy)/(dx)]_(x=x_1) = 1/h * (Delta y_1 - 1/2 * Delta^2 y_1 + 1/3 * Delta^3 y_1 - 1/4 * Delta^4 y_1)`
`:.[(dy)/(dx)]_(x=0.1) = 1/0.1 * (-0.0075 - 1/2 xx -0.0049 + 1/3 xx -0.0999 - 1/4 xx 0)`
`:.[(dy)/(dx)]_(x=0.1) = -0.3835`
`[(d^2y)/(dx^2)]_(x=x_1) = 1/h^2 * (Delta^2 y_1 - Delta^3 y_1 + 11/12 * Delta^4 y_1)`
`:.[(d^2y)/(dx^2)]_(x=0.1) = 1/0.01 * (-0.0049 - (-0.0999) + 11/12 xx 0)`
`:.[(d^2y)/(dx^2)]_(x=0.1) = 9.5`
`:.` `Pn'(0.1) = -0.3835` and `Pn''(0.1) = 9.5`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then