Home > Numerical methods calculators > Numerical Differentiation using Lagrange's formula example

5. Lagrange's formula (Numerical Differentiation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference formula
  4. Lagrange's formula
  5. Stirling's formula
  6. Bessel's formula

3. Newton's Divided Difference formula
(Previous method)
2. Example-2
(Next example)

1. Formula & Example-1





Formula
Lagrange's formula
1. Find equation using Lagrange's formula
`f(x) = ((x - x_1)(x - x_2)...(x - x_n))/((x_0 - x_1)(x_0 - x_2)...(x_0 - x_n)) xx y_0 + ((x - x_0)(x - x_2)...(x - x_n))/((x_1 - x_0)(x_1 - x_2)...(x_1 - x_n)) xx y_1` `+ ((x - x_0)(x - x_1)(x - x_3)...(x - x_n))/((x_2 - x_0)(x_2 - x_1)(x_2 - x_3)...(x_2 - x_n)) xx y_2 + ... + ((x - x_0)(x - x_1)...(x - x_(n-1)))/((x_n - x_0)(x_n - x_1)...(x_n - x_(n-1))) xx y_n`

2. Now, differentiate f(x) with respect to x to get f'(x) and f''(x)

3. Now, substitute value of `x` in f'(x) and f''(x)

Examples
1. Using Lagrange's formula to find solution
xf(x)
24
456
9711
10980

x = 5


Solution:
The value of table for `x` and `y`

x24910
y456711980

Lagrange's Interpolating Polynomial
Lagrange's formula is
`f(x) = ((x - x_1)(x - x_2)(x - x_3))/((x_0 - x_1)(x_0 - x_2)(x_0 - x_3)) xx y_0 + ((x - x_0)(x - x_2)(x - x_3))/((x_1 - x_0)(x_1 - x_2)(x_1 - x_3)) xx y_1 + ((x - x_0)(x - x_1)(x - x_3))/((x_2 - x_0)(x_2 - x_1)(x_2 - x_3)) xx y_2 + ((x - x_0)(x - x_1)(x - x_2))/((x_3 - x_0)(x_3 - x_1)(x_3 - x_2)) xx y_3`

`f(x) = ((x -4)(x -9)(x -10))/((2 -4)(2 -9)(2 -10)) xx 4 + ((x -2)(x -9)(x -10))/((4 -2)(4 -9)(4 -10)) xx 56 + ((x -2)(x -4)(x -10))/((9 -2)(9 -4)(9 -10)) xx 711 + ((x -2)(x -4)(x -9))/((10 -2)(10 -4)(10 -9)) xx 980`

`f(x) = ((x -4)(x -9)(x -10))/((-2)(-7)(-8)) xx 4 + ((x -2)(x -9)(x -10))/((2)(-5)(-6)) xx 56 + ((x -2)(x -4)(x -10))/((7)(5)(-1)) xx 711 + ((x -2)(x -4)(x -9))/((8)(6)(1)) xx 980`

`f(x) = (x^3-23x^2+166x-360)/(-112) xx 4 + (x^3-21x^2+128x-180)/(60) xx 56 + (x^3-16x^2+68x-80)/(-35) xx 711 + (x^3-15x^2+62x-72)/(48) xx 980`

`f(x) = (x^3-23x^2+166x-360) xx -0.0357 + (x^3-21x^2+128x-180) xx 0.9333 + (x^3-16x^2+68x-80) xx -20.3143 + (x^3-15x^2+62x-72) xx 20.4167`

`f(x) = (-+0.82x^2-5.93x+12.86) + (0.93x^3-19.6x^2+119.47x-168) + (-20.31x^3+325.03x^2-1381.37x+1625.14) + (20.42x^3-306.25x^2+1265.83x-1470)`

`f(x) = x^3-2x `

Now, differentiate with x
`f'(x)=3x^2-2`

`f''(x)=6x`

Now, substitute `x=5`

`f'(5)=3 xx 5^2-2=73`

`f''(5)=6 xx 5=30`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Newton's Divided Difference formula
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.