Home > Numerical methods calculators > Numerical Differentiation using Stirling's formula example

6. Stirling's formula (Numerical Differentiation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference formula
  4. Lagrange's formula
  5. Stirling's formula
  6. Bessel's formula

1. Formula & Example-1
(Previous example)
6. Bessel's formula
(Next method)

2. Example-2





2. Using Stirling's formula to find solution
xf(x)
0135
300149
600157
900183
1200201
1500205
1800193

x = 900


Solution:
Stirling's formula (central difference formula).
The value of table for `x` and `y`

x0300600900120015001800
y135149157183201205193

Difference table is
xy`Deltay``Delta^2y``Delta^3y``Delta^4y``Delta^5y``Delta^6y`
0135
14
300149-6
824
60015718-50
26-2670
900183-820-86
18-6-16
1200201-144
4-2
1500205-16
-12
1800193


The value of `x` at you want to find `f(x) : x_0 = 900`

`h = x_1 - x_0 = 300 - 0 = 300`


Stirling's Formula is
`[(dy)/(dx)]_(x=x_0) = 1/h * [1/2 * (Delta y_0 + Delta y_(-1)) - 1/12 * (Delta^3 y_(-1) + Delta^3 y_(-2)) + 1/60 * (Delta^5 y_(-2) + Delta^5 y_(-3)) + ...]`

`:.[(dy)/(dx)]_(x=900) = 1/300 * [1/2 * (18 +26) - 1/12 * (-6 -26)+ 1/60 * (-16 +70)]`

`:.[(dy)/(dx)]_(x=900) = 1/300 * [22+2.6666666667+0.9]`

`:.[(dy)/(dx)]_(x=900) = 0.08522`


`[(d^2y)/(dx^2)]_(x=x_0) = 1/h^2 * [Delta^2 y_(-1) - 1/12 Delta^4 y_(-2) + 1/90 * Delta^6 y_(-3) + ...]`

`:.[(d^2y)/(dx^2)]_(x=900) = 1/90000 * [-8 - 1/12 * 20+ 1/90 * -86]`

`:.[(d^2y)/(dx^2)]_(x=900) = 1/90000 * [-8-1.6666666667-0.9555555556]`

`:.[(d^2y)/(dx^2)]_(x=900) = -0.00012`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example-1
(Previous example)
6. Bessel's formula
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.