Home > Numerical methods calculators > Numerical Integration using Simpson's 1/3 Rule example

2. Simpson's 1/3 rule (Numerical integration) example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (`f(x)=1/x`)
Other related methods
  1. Trapezoidal rule
  2. Simpson's 1/3 rule
  3. Simpson's 3/8 rule
  4. Boole's rule
  5. Weddle's rule

1. Trapezoidal rule
(Previous method)
2. Example-2 (`f(x)=1/x`)
(Next example)

1. Formula & Example-1 (table data)





Formula
2. Simpsons `1/3` Rule
`int y dx = h/3 (y_0 + 4(y_1 + y_3 + y_5 + ... + + y_(n-1)) + 2(y_2 + y_4 + y_6 + ... + y_(n-2)) + y_n)`

Examples
1. Find Solution using Simpson's 1/3 rule
xf(x)
1.44.0552
1.64.9530
1.86.0436
2.07.3891
2.29.0250


Solution:
The value of table for `x` and `y`

x1.41.61.822.2
y4.05524.9536.04367.38919.025

Using Simpsons `1/3` Rule

`int y dx = h/3 [(y_0 + y_4) + 4(y_1 + y_3) + 2(y_2)]`

`int y dx = 0.2/3 [(4.0552 + 9.025) + 4xx(4.953 + 7.3891) + 2xx(6.0436)]`

`int y dx = 0.2/3 [(4.0552 + 9.025) + 4xx(12.3421) + 2xx(6.0436)]`

`int y dx = 4.9691`

Solution by Simpson's `1/3` Rule is `4.9691`


2. Find Solution using Simpson's 1/3 rule
xf(x)
0.01.0000
0.10.9975
0.20.9900
0.30.9776
0.40.8604


Solution:
The value of table for `x` and `y`

x00.10.20.30.4
y10.99750.990.97760.8604

Using Simpsons `1/3` Rule

`int y dx = h/3 [(y_0 + y_4) + 4(y_1 + y_3) + 2(y_2)]`

`int y dx = 0.1/3 [(1 + 0.8604) + 4xx(0.9975 + 0.9776) + 2xx(0.99)]`

`int y dx = 0.1/3 [(1 + 0.8604) + 4xx(1.9751) + 2xx(0.99)]`

`int y dx = 0.39136`

Solution by Simpson's `1/3` Rule is `0.39136`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Trapezoidal rule
(Previous method)
2. Example-2 (`f(x)=1/x`)
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.