Home > Numerical methods calculators > Numerical Interpolation using Gauss Forward formula example

6. Gauss Forward formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

2. Example-2
(Previous example)
7. Gauss Backward formula
(Next method)

3. Example-3





Find Solution using Gauss Forward formula
xf(x)
2118.4708
2517.8144
2917.1070
3316.3432
3715.5154

x = 30
Finding f(2)


Solution:
The value of table for `x` and `y`

x2125293337
y18.470817.814417.10716.343215.5154

Gauss's forward method to find solution

`h=25-21=4`

Taking `x_0=29` then `p=(x-x_0)/h=(x-29)/4`

Now the central difference table is
`x``p=(x-29)/4``y``Deltay``Delta^2y``Delta^3y``Delta^4y`
21-218.4708
-0.6564
25-117.8144-0.051
-0.7074-0.0054
29017.107-0.0564-0.0022
-0.7638-0.0076
33116.3432-0.064
-0.8278
37215.5154


`x = 30`

`p = (x - x_0)/h = (30 - 29)/4 = 0.25`

`y_0=17.107, Delta y_0=-0.7638,Delta^2y_(-1)=-0.0564,Delta^3y_(-1)=-0.0076,Delta^4y_(-2)=-0.0022`

Gauss's forward interpolation formula is
`y_p=y_0+p Delta y_0 + (p(p - 1))/(2!) * Delta^2y_(-1) + ((p + 1)p(p - 1))/(3!) * Delta^3y_(-1) + ((p + 1)p(p - 1)(p - 2))/(4!) * Delta^4y_(-2)`

`y_(0.25) = 17.107 + (0.25)(-0.7638) + ((0.25)(0.25 - 1))/(2) * (-0.0564) + ((0.25 + 1)(0.25)(0.25 - 1))/(6) * (-0.0076) + ((0.25 + 1)(0.25)(0.25 - 1)(0.25 - 2))/(24) * (-0.0022)`

`y_(0.25)=17.107 -0.1909 +0.0052875 +0.000296875 -0.0000375977`

`y_(0.25)=16.9216`


Solution of Gauss's forward interpolation is `y(30) = 16.9216`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Previous example)
7. Gauss Backward formula
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.