Home > Numerical methods calculators > Numerical differential equation using Adams bashforth predictor method example

1. Adams bashforth predictor method example ( Enter your problem )
  1. Formula & Example-1 `y'=(x+y)/2` (table data)
  2. Example `y'=y-x^3`, Initial value by rk4
  3. Example `y'=x-y^2`, Initial value by rk4
Other related methods
  1. Adams bashforth predictor method
  2. Milne's simpson predictor corrector method

2. Example `y'=y-x^3`, Initial value by rk4
(Next example)

1. Formula & Example-1 `y'=(x+y)/2` (table data)





Formula
Adam's Bashforth Predictor formula is
`y_(n+1,p) = y_n + h/24 (55y'_(n) - 59y'_(n-1) + 37y'_(n-2) - 9y'_(n-3))`
putting `n=3`, we get
`y_(4,p)=y_3 + h/24 (55y'_(3) - 59y'_2 + 37y'_1 - 9y'_0)`
Adam's Bashforth Corrector formula is
`y_(n+1,c) = y_n + h/24 (9y'_(n+1) + 19y'_(n) - 5y'_(n-1) + y'_(n-2))`
putting `n=3`, we get
`y_(4,c) = y_3 + h/24 (9y'_4 + 19y'_3 - 5y'_2 + y'_1)`

Examples
1. `y'=(x+y)/2`,
`x_i`00.511.5
`y_i`22.6363.5954.968
Find y(2) by Adams bashforth predictor method


Solution:
`y'=(x+y)/2`

Adam's Bashforth Predictor formula is
`y_(n+1,p) = y_n + h/24 (55y'_(n) - 59y'_(n-1) + 37y'_(n-2) - 9y'_(n-3))`

putting `n=3`, we get

`y_(4,p)=y_3 + h/24 (55y'_(3) - 59y'_2 + 37y'_1 - 9y'_0) ->(2)`

We have given that
`x_0=0,x_1=0.5,x_2=1,x_3=1.5`

`y_0=2,y_1=2.636,y_2=3.595,y_3=4.968`

`y'=(x+y)/2`

`y'_0=(x+y)/2=1` (where `x=0,y=2`)

`y'_1=(x+y)/2=1.568` (where `x=0.5,y=2.636`)

`y'_2=(x+y)/2=2.2975` (where `x=1,y=3.595`)

`y'_3=(x+y)/2=3.234` (where `x=1.5,y=4.968`)

putting the values in (2), we get
`y_(4,p)=y_3 + h/24 (55y'_(3) - 59y'_2 + 37y'_1 - 9y'_0)`

`y_(4,p)=4.968 + 0.5/24 * (55 * 3.234 - 59 * 2.2975 + 37 * 1.568 - 9 * 1)`

`y_(4,p)=4.968 + 0.5/24 * (177.87 - 135.5525 + 58.016 - 9)`

`y_(4,p)=4.968 + 0.5/24 * (91.3335)`

`y_(4,p)=4.968 +1.9028`

`y_(4,p)=6.8708`

So, the predicted value is `6.8708`

Now, we will correct it by corrector method to get the final value
`y'_4=(x+y)/2=4.4354` (where `x=2,y=6.8708`)

Adam's Bashforth Corrector formula is
`y_(n+1,c) = y_n + h/24 (9y'_(n+1) + 19y'_(n) - 5y'_(n-1) + y'_(n-2))`

putting `n=3`, we get

`y_(4,c) = y_3 + h/24 (9y'_4 + 19y'_3 - 5y'_2 + y'_1)`

`y_(4,c) = 4.968 + 0.5/24 * (9 * 4.4354 + 19 * 3.234 - 5 * 2.2975 + 1.568)`

`y_(4,c) = 4.968 + 0.5/24 * (39.9185 + 61.446 - 11.4875 + 1.568)`

`y_(4,c) = 4.968 + 0.5/24 * (91.445)`

`y_(4,c) = 4.968 +1.9051`

`y_(4,c)=6.8731`

`:.y(2) = 6.8731`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example `y'=y-x^3`, Initial value by rk4
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.