Home > Numerical methods calculators > Numerical differential equation using Milne's simpson predictor corrector methodexample

2. Milne's simpson predictor corrector method example ( Enter your problem )
  1. Formula & Example-1 `y'=(x+y)/2` (table data)
  2. Example `y'=y-x^3`, Initial value by rk4
  3. Example `y'=x-y^2`, Initial value by rk4
Other related methods
  1. Adams bashforth predictor method
  2. Milne's simpson predictor corrector method

1. Adams bashforth predictor method
(Previous method)
2. Example `y'=y-x^3`, Initial value by rk4
(Next example)

1. Formula & Example-1 `y'=(x+y)/2` (table data)





Formula
Milne's simpson predictor formula is
`y_(n+1,p) = y_(n-3) + (4h)/3 (2y'_(n-2) - y'_(n-1)+ 2y'_(n))`
putting `n=3`, we get
`y_(4,p)=y_0 + (4h)/3 (2y'_1 - y'_2 + 2y'_3)`
Milne's simpson corrector formula is
`y_(n+1,c) = y_(n-1) + h/3 (y'_(n-1) + 4y'_(n) + y'_(n+1))`
putting `n=3`, we get
`y_(4,c) = y_2 + h/3 (y'_2 + 4y'_3 + y'_4)`

Examples
1. `y'=(x+y)/2`,
`x_i`00.511.5
`y_i`22.6363.5954.968
Find y(2) by Milne's simpson predictor corrector method


Solution:
`y'=(x+y)/2`

Milne's simpson predictor formula is
`y_(n+1,p) = y_(n-3) + (4h)/3 (2y'_(n-2) - y'_(n-1)+ 2y'_(n))`

putting `n=3`, we get

`y_(4,p)=y_0 + (4h)/3 (2y'_1 - y'_2 + 2y'_3) ->(2)`

We have given that
`x_0=0,x_1=0.5,x_2=1,x_3=1.5`

and using runge kutta 4 method, we get
`y_0=2,y_1=2.636,y_2=3.595,y_3=4.968`

`y'=(x+y)/2`

`y'_1=(x+y)/2=1.568` (where `x=0.5,y=2.636`)

`y'_2=(x+y)/2=2.2975` (where `x=1,y=3.595`)

`y'_3=(x+y)/2=3.234` (where `x=1.5,y=4.968`)

putting the values in (2), we get
`y_(4,p)=y_0 + (4h)/3 (2y'_1 - y'_2 + 2y'_3) ->(2)`

`y_(4,p)=2 + (4*0.5)/3 * (2 * 1.568 - 2.2975 + 2 * 3.234)`

`y_(4,p)=6.871`

So, the predicted value is `6.871`

Now, we will correct it by corrector method to get the final value
`y'_4=(x+y)/2=4.4355` (where `x=2,y=6.871`)

Milne's simpson corrector formula is
`y_(n+1,c) = y_(n-1) + h/3 (y'_(n-1) + 4y'_(n) + y'_(n+1))`

putting `n=3`, we get

`y_(4,c) = y_2 + h/3 (y'_2 + 4y'_3 + y'_4)`

`y_(4,c) = 3.595 + 0.5/3 * (2.2975 + 4 * 3.234 + 4.4355)`

`y_4=6.8732`

`:.y(2) = 6.8732` (Answer)




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Adams bashforth predictor method
(Previous method)
2. Example `y'=y-x^3`, Initial value by rk4
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.