f(x)=5xe^(-2x), find f'(0.35) with h=0.25 using Richardson extrapolation method
Solution:
Richardson Extrapolation method
Equation is f(x) = 5xexp(-2x).
h=0.25
f^'(x)=(f(x+h)-f(x-h))/(2h) (CDD)
f^'(0.35)=(f(0.35+0.25)-f(0.35-0.25))/(2*0.25)
f^'(0.35)=(f(0.6)-f(0.1))/0.5
f^'(0.35)=(0.9036-0.4094)/0.5
f^'(0.35)=0.9884
h=0.125
f^'(x)=(f(x+h)-f(x-h))/(2h)
f^'(0.35)=(f(0.35+0.125)-f(0.35-0.125))/(2*0.125)
f^'(0.35)=(f(0.475)-f(0.225))/0.25
f^'(0.35)=(0.9185-0.7173)/0.25
f^'(0.35)=0.8047
TV=(AV)_(h/2)+((AV)_(h/2)-(AV)_(h))/3
=0.8047 + (0.8047 - 0.9884) / 3
=0.7435
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then