Find y(0.5) for `y'=-2x-y`, `x_0=0, y_0=-1`, with step length 0.1 using Runge-Kutta 2 method (1st order derivative) Solution:Given `y'=-2x-y, y(0)=-1, h=0.1, y(0.5)=?`
Method-1 : Using formula `k_2=hf(x_0+h,y_0+k_1)`Second order R-K method
`k_1=hf(x_0,y_0)=(0.1)f(0,-1)=(0.1)*(1)=0.1`
`k_2=hf(x_0+h,y_0+k_1)=(0.1)f(0.1,-0.9)=(0.1)*(0.7)=0.07`
`y_1=y_0+(k_1+k_2)/2=-1+0.085=-0.915`
`:.y(0.1)=-0.915`
Again taking `(x_1,y_1)` in place of `(x_0,y_0)` and repeat the process
`k_1=hf(x_1,y_1)=(0.1)f(0.1,-0.915)=(0.1)*(0.715)=0.0715`
`k_2=hf(x_1+h,y_1+k_1)=(0.1)f(0.2,-0.8435)=(0.1)*(0.4435)=0.0444`
`y_2=y_1+(k_1+k_2)/2=-0.915+0.0579=-0.8571`
`:.y(0.2)=-0.8571`
Again taking `(x_2,y_2)` in place of `(x_1,y_1)` and repeat the process
`k_1=hf(x_2,y_2)=(0.1)f(0.2,-0.8571)=(0.1)*(0.4571)=0.0457`
`k_2=hf(x_2+h,y_2+k_1)=(0.1)f(0.3,-0.8114)=(0.1)*(0.2114)=0.0211`
`y_3=y_2+(k_1+k_2)/2=-0.8571+0.0334=-0.8237`
`:.y(0.3)=-0.8237`
Again taking `(x_3,y_3)` in place of `(x_2,y_2)` and repeat the process
`k_1=hf(x_3,y_3)=(0.1)f(0.3,-0.8237)=(0.1)*(0.2237)=0.0224`
`k_2=hf(x_3+h,y_3+k_1)=(0.1)f(0.4,-0.8013)=(0.1)*(0.0013)=0.0001`
`y_4=y_3+(k_1+k_2)/2=-0.8237+0.0112=-0.8124`
`:.y(0.4)=-0.8124`
Again taking `(x_4,y_4)` in place of `(x_3,y_3)` and repeat the process
`k_1=hf(x_4,y_4)=(0.1)f(0.4,-0.8124)=(0.1)*(0.0124)=0.0012`
`k_2=hf(x_4+h,y_4+k_1)=(0.1)f(0.5,-0.8112)=(0.1)*(-0.1888)=-0.0189`
`y_5=y_4+(k_1+k_2)/2=-0.8124-0.0088=-0.8212`
`:.y(0.5)=-0.8212`
`:.y(0.5)=-0.8212`
| `n` | `x_n` | `y_n` | `k_1` | `k_2` | `x_(n+1)` | `y_(n+1)` |
| 0 | 0 | -1 | 0.1 | 0.07 | 0.1 | -0.915 |
| 1 | 0.1 | -0.915 | 0.0715 | 0.0444 | 0.2 | -0.8571 |
| 2 | 0.2 | -0.8571 | 0.0457 | 0.0211 | 0.3 | -0.8237 |
| 3 | 0.3 | -0.8237 | 0.0224 | 0.0001 | 0.4 | -0.8124 |
| 4 | 0.4 | -0.8124 | 0.0012 | -0.0189 | 0.5 | -0.8212 |
Method-2 : Using formula `k_2=hf(x_0+h/2,y_0+k_1/2)`Second order R-K method
`k_1=hf(x_0,y_0)=(0.1)f(0,-1)=(0.1)*(1)=0.1`
`k_2=hf(x_0+h/2,y_0+k_1/2)=(0.1)f(0.05,-0.95)=(0.1)*(0.85)=0.085`
`y_1=y_0+k_2=-1+0.085=-0.915`
`:.y(0.1)=-0.915`
Again taking `(x_1,y_1)` in place of `(x_0,y_0)` and repeat the process
`k_1=hf(x_1,y_1)=(0.1)f(0.1,-0.915)=(0.1)*(0.715)=0.0715`
`k_2=hf(x_1+h/2,y_1+k_1/2)=(0.1)f(0.15,-0.8792)=(0.1)*(0.5792)=0.0579`
`y_2=y_1+k_2=-0.915+0.0579=-0.8571`
`:.y(0.2)=-0.8571`
Again taking `(x_2,y_2)` in place of `(x_1,y_1)` and repeat the process
`k_1=hf(x_2,y_2)=(0.1)f(0.2,-0.8571)=(0.1)*(0.4571)=0.0457`
`k_2=hf(x_2+h/2,y_2+k_1/2)=(0.1)f(0.25,-0.8342)=(0.1)*(0.3342)=0.0334`
`y_3=y_2+k_2=-0.8571+0.0334=-0.8237`
`:.y(0.3)=-0.8237`
Again taking `(x_3,y_3)` in place of `(x_2,y_2)` and repeat the process
`k_1=hf(x_3,y_3)=(0.1)f(0.3,-0.8237)=(0.1)*(0.2237)=0.0224`
`k_2=hf(x_3+h/2,y_3+k_1/2)=(0.1)f(0.35,-0.8125)=(0.1)*(0.1125)=0.0112`
`y_4=y_3+k_2=-0.8237+0.0112=-0.8124`
`:.y(0.4)=-0.8124`
Again taking `(x_4,y_4)` in place of `(x_3,y_3)` and repeat the process
`k_1=hf(x_4,y_4)=(0.1)f(0.4,-0.8124)=(0.1)*(0.0124)=0.0012`
`k_2=hf(x_4+h/2,y_4+k_1/2)=(0.1)f(0.45,-0.8118)=(0.1)*(-0.0882)=-0.0088`
`y_5=y_4+k_2=-0.8124-0.0088=-0.8212`
`:.y(0.5)=-0.8212`
`:.y(0.5)=-0.8212`
| `n` | `x_n` | `y_n` | `k_1` | `k_2` | `x_(n+1)` | `y_(n+1)` |
| 0 | 0 | -1 | 0.1 | 0.085 | 0.1 | -0.915 |
| 1 | 0.1 | -0.915 | 0.0715 | 0.0579 | 0.2 | -0.8571 |
| 2 | 0.2 | -0.8571 | 0.0457 | 0.0334 | 0.3 | -0.8237 |
| 3 | 0.3 | -0.8237 | 0.0224 | 0.0112 | 0.4 | -0.8124 |
| 4 | 0.4 | -0.8124 | 0.0012 | -0.0088 | 0.5 | -0.8212 |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then