Find y(0.5) for `y'=-2x-y`, `x_0=0, y_0=-1`, with step length 0.1 using Runge-Kutta 4 method (1st order derivative) Solution:Given `y'=-2x-y, y(0)=-1, h=0.1, y(0.5)=?`
Fourth order R-K method
`k_1=f(x_0,y_0)=f(0,-1)=1`
`k_2=f(x_0+h/2,y_0+(hk_1)/2)=f(0.05,-0.95)=0.85`
`k_3=f(x_0+h/2,y_0+(hk_2)/2)=f(0.05,-0.9575)=0.8575`
`k_4=f(x_0+h,y_0+hk_3)=f(0.1,-0.9142)=0.7143`
`y_1=y_0+h/6(k_1+2k_2+2k_3+k_4)`
`y_1=-1+0.1/6[1+2(0.85)+2(0.8575)+(0.7143)]`
`y_1=-0.9145`
`:.y(0.1)=-0.9145`
Again taking `(x_1,y_1)` in place of `(x_0,y_0)` and repeat the process
`k_1=f(x_1,y_1)=f(0.1,-0.9145)=0.7145`
`k_2=f(x_1+h/2,y_1+(hk_1)/2)=f(0.15,-0.8788)=0.5788`
`k_3=f(x_1+h/2,y_1+(hk_2)/2)=f(0.15,-0.8856)=0.5856`
`k_4=f(x_1+h,y_1+hk_3)=f(0.2,-0.856)=0.456`
`y_2=y_1+h/6(k_1+2k_2+2k_3+k_4)`
`y_2=-0.9145+0.1/6[0.7145+2(0.5788)+2(0.5856)+(0.456)]`
`y_2=-0.8562`
`:.y(0.2)=-0.8562`
Again taking `(x_2,y_2)` in place of `(x_0,y_0)` and repeat the process
`k_1=f(x_2,y_2)=f(0.2,-0.8562)=0.4562`
`k_2=f(x_2+h/2,y_2+(hk_1)/2)=f(0.25,-0.8334)=0.3334`
`k_3=f(x_2+h/2,y_2+(hk_2)/2)=f(0.25,-0.8395)=0.3395`
`k_4=f(x_2+h,y_2+hk_3)=f(0.3,-0.8222)=0.2222`
`y_3=y_2+h/6(k_1+2k_2+2k_3+k_4)`
`y_3=-0.8562+0.1/6[0.4562+2(0.3334)+2(0.3395)+(0.2222)]`
`y_3=-0.8225`
`:.y(0.3)=-0.8225`
Again taking `(x_3,y_3)` in place of `(x_0,y_0)` and repeat the process
`k_1=f(x_3,y_3)=f(0.3,-0.8225)=0.2225`
`k_2=f(x_3+h/2,y_3+(hk_1)/2)=f(0.35,-0.8113)=0.1113`
`k_3=f(x_3+h/2,y_3+(hk_2)/2)=f(0.35,-0.8169)=0.1169`
`k_4=f(x_3+h,y_3+hk_3)=f(0.4,-0.8108)=0.0108`
`y_4=y_3+h/6(k_1+2k_2+2k_3+k_4)`
`y_4=-0.8225+0.1/6[0.2225+2(0.1113)+2(0.1169)+(0.0108)]`
`y_4=-0.811`
`:.y(0.4)=-0.811`
Again taking `(x_4,y_4)` in place of `(x_0,y_0)` and repeat the process
`k_1=f(x_4,y_4)=f(0.4,-0.811)=0.011`
`k_2=f(x_4+h/2,y_4+(hk_1)/2)=f(0.45,-0.8104)=-0.0896`
`k_3=f(x_4+h/2,y_4+(hk_2)/2)=f(0.45,-0.8154)=-0.0846`
`k_4=f(x_4+h,y_4+hk_3)=f(0.5,-0.8194)=-0.1806`
`y_5=y_4+h/6(k_1+2k_2+2k_3+k_4)`
`y_5=-0.811+0.1/6[0.011+2(-0.0896)+2(-0.0846)+(-0.1806)]`
`y_5=-0.8196`
`:.y(0.5)=-0.8196`
`:.y(0.5)=-0.8196`
| `n` | `x_n` | `y_n` | `k_1` | `k_2` | `k_3` | `k_4` | `x_(n+1)` | `y_(n+1)` |
| 0 | 0 | -1 | 1 | 0.85 | 0.8575 | 0.7143 | 0.1 | -0.9145 |
| 1 | 0.1 | -0.9145 | 0.7145 | 0.5788 | 0.5856 | 0.456 | 0.2 | -0.8562 |
| 2 | 0.2 | -0.8562 | 0.4562 | 0.3334 | 0.3395 | 0.2222 | 0.3 | -0.8225 |
| 3 | 0.3 | -0.8225 | 0.2225 | 0.1113 | 0.1169 | 0.0108 | 0.4 | -0.811 |
| 4 | 0.4 | -0.811 | 0.011 | -0.0896 | -0.0846 | -0.1806 | 0.5 | -0.8196 |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then