Find y(0.2) for `y'=-y`, `x_0=0, y_0=1`, with step length 0.1 using Runge-Kutta 4 method (1st order derivative) Solution:Given `y'=-y, y(0)=1, h=0.1, y(0.2)=?`
Fourth order R-K method
`k_1=f(x_0,y_0)=f(0,1)=-1`
`k_2=f(x_0+h/2,y_0+(hk_1)/2)=f(0.05,0.95)=-0.95`
`k_3=f(x_0+h/2,y_0+(hk_2)/2)=f(0.05,0.9525)=-0.9525`
`k_4=f(x_0+h,y_0+hk_3)=f(0.1,0.9048)=-0.9048`
`y_1=y_0+h/6(k_1+2k_2+2k_3+k_4)`
`y_1=1+0.1/6[-1+2(-0.95)+2(-0.9525)+(-0.9048)]`
`y_1=0.9048`
`:.y(0.1)=0.9048`
Again taking `(x_1,y_1)` in place of `(x_0,y_0)` and repeat the process
`k_1=f(x_1,y_1)=f(0.1,0.9048)=-0.9048`
`k_2=f(x_1+h/2,y_1+(hk_1)/2)=f(0.15,0.8596)=-0.8596`
`k_3=f(x_1+h/2,y_1+(hk_2)/2)=f(0.15,0.8619)=-0.8619`
`k_4=f(x_1+h,y_1+hk_3)=f(0.2,0.8187)=-0.8187`
`y_2=y_1+h/6(k_1+2k_2+2k_3+k_4)`
`y_2=0.9048+0.1/6[-0.9048+2(-0.8596)+2(-0.8619)+(-0.8187)]`
`y_2=0.8187`
`:.y(0.2)=0.8187`
`:.y(0.2)=0.8187`
| `n` | `x_n` | `y_n` | `k_1` | `k_2` | `k_3` | `k_4` | `x_(n+1)` | `y_(n+1)` |
| 0 | 0 | 1 | -1 | -0.95 | -0.9525 | -0.9048 | 0.1 | 0.9048 |
| 1 | 0.1 | 0.9048 | -0.9048 | -0.8596 | -0.8619 | -0.8187 | 0.2 | 0.8187 |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then