4. Runge-Kutta 4 method (1st order derivative) example ( Enter your problem )
  1. Formula-1 & Example-1
  2. Example-2
  3. Example-3
  4. Formula-2 & Example-1
  5. Example-2
  6. Example-3
Other related methods
  1. Euler method (1st order derivative)
  2. Runge-Kutta 2 method (1st order derivative)
  3. Runge-Kutta 3 method (1st order derivative)
  4. Runge-Kutta 4 method (1st order derivative)
  5. Improved Euler method (1st order derivative)
  6. Modified Euler method (1st order derivative)
  7. Taylor Series method (1st order derivative)
  8. Euler method (2nd order derivative)
  9. Runge-Kutta 2 method (2nd order derivative)
  10. Runge-Kutta 3 method (2nd order derivative)
  11. Runge-Kutta 4 method (2nd order derivative)

2. Example-2
(Previous example)
4. Formula-2 & Example-1
(Next example)

3. Example-3





Find y(0.2) for y'=-y, x_0=0, y_0=1, with step length 0.1 using Runge-Kutta 4 method (1st order derivative)

Solution:
Given y'=-y, y(0)=1, h=0.1, y(0.2)=?

Forth order R-K method
k_1=hf(x_0,y_0)=(0.1)f(0,1)=(0.1)*(-1)=-0.1

k_2=hf(x_0+h/2,y_0+k_1/2)=(0.1)f(0.05,0.95)=(0.1)*(-0.95)=-0.095

k_3=hf(x_0+h/2,y_0+k_2/2)=(0.1)f(0.05,0.9525)=(0.1)*(-0.9525)=-0.09525

k_4=hf(x_0+h,y_0+k_3)=(0.1)f(0.1,0.90475)=(0.1)*(-0.90475)=-0.09048

y_1=y_0+1/6(k_1+2k_2+2k_3+k_4)

y_1=1+1/6[-0.1+2(-0.095)+2(-0.09525)+(-0.09048)]

y_1=0.90484

:.y(0.1)=0.90484


Again taking (x_1,y_1) in place of (x_0,y_0) and repeat the process

k_1=hf(x_1,y_1)=(0.1)f(0.1,0.90484)=(0.1)*(-0.90484)=-0.09048

k_2=hf(x_1+h/2,y_1+k_1/2)=(0.1)f(0.15,0.8596)=(0.1)*(-0.8596)=-0.08596

k_3=hf(x_1+h/2,y_1+k_2/2)=(0.1)f(0.15,0.86186)=(0.1)*(-0.86186)=-0.08619

k_4=hf(x_1+h,y_1+k_3)=(0.1)f(0.2,0.81865)=(0.1)*(-0.81865)=-0.08187

y_2=y_1+1/6(k_1+2k_2+2k_3+k_4)

y_2=0.90484+1/6[-0.09048+2(-0.08596)+2(-0.08619)+(-0.08187)]

y_2=0.81873

:.y(0.2)=0.81873


:.y(0.2)=0.81873


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Previous example)
4. Formula-2 & Example-1
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.