Formula
7. Taylor Series method
`h=x-x_0`
`y_1 = y_0 + hy_0' + h^2/(2!) y_0'' + h^3/(3!) y_0''' + h^4/(4!) y_0'''' + ...`
|
Examples
1. Find y(0.2) for `y'=(x-y)/2`, `x_0=0, y_0=1`, with step length 0.1 using Taylor Series method (1st order derivative) Solution:Given `y'=(x-y)/(2), y(0)=1, h=0.1, y(0.2)=?`
Here, `x_0=0,y_0=1,h=0.1,x_n=0.2`
Differentiating successively, we get
Derivative steps
`d/(dx)(x/2-y/2)`
`=d/(dx)(x/2)-d/(dx)(y/2)`
`=(1/2)-((y')/2)`
`=1/2-(y')/2`
Now, `d^2/(dx^2)(x/2-y/2)=d/(dx)(1/2-(y')/2)`
`=d/(dx)(1/2)-d/(dx)((y')/2)`
`=0-((y'')/2)`
`=0-(y'')/2`
`=-(y'')/2`
Now, `d^3/(dx^3)(x/2-y/2)=d/(dx)(-(y'')/2)`
`=-(y''')/2`
`y'=(x-y)/(2)`
`y''=1/2-(y')/2`
`y'''=-(y'')/2`
`y''''=-(y''')/2`
Now substituting, we get
`y_0'=(x_0-y_0)/(2)=-0.5`
`y_0''=1/2-(y_0')/2=0.75`
`y_0'''=-(y_0'')/2=-0.375`
`y_0''''=-(y_0''')/2=0.1875`
Putting these values in Taylor Series, we have
`y_1 = y_0 + hy_0' + h^2/(2!) y_0'' + h^3/(3!) y_0''' + h^4/(4!) y_0'''' + ...`
`=1+0.1*(-0.5)+(0.1)^2/(2!)*(0.75)+(0.1)^3/(3!)*(-0.375)+(0.1)^4/(4!)*(0.1875)+...`
`=1-0.05+0.0038+0+0+...`
`=0.9537`
`:.y(0.1)=0.9537`
Again taking `(x_1,y_1)` in place of `(x_0,y_0)` and repeat the process
Now substituting, we get
`y_1'=(x_1-y_1)/(2)=-0.4268`
`y_1''=1/2-(y_1')/2=0.7134`
`y_1'''=-(y_1'')/2=-0.3567`
`y_1''''=-(y_1''')/2=0.1784`
Putting these values in Taylor Series, we have
`y_2 = y_1 + hy_1' + h^2/(2!) y_1'' + h^3/(3!) y_1''' + h^4/(4!) y_1'''' + ...`
`=0.9537+0.1*(-0.4268)+(0.1)^2/(2!)*(0.7134)+(0.1)^3/(3!)*(-0.3567)+(0.1)^4/(4!)*(0.1784)+...`
`=0.9537-0.0427+0.0036+0+0+...`
`=0.9145`
`:.y(0.2)=0.9145`
| `n` | `x_n` | `y_n` | `y_n'` | `y_n''` | `y_n'''` | `y_n''''` | `x_(n+1)` | `y_(n+1)` |
| 0 | 0 | 1 | -0.5 | 0.75 | -0.375 | 0.1875 | 0.1 | 0.9537 |
| 1 | 0.1 | 0.9537 | -0.4268 | 0.7134 | -0.3567 | 0.1784 | 0.2 | 0.9145 |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then