Find y(0.2) for `y'=-y`, `x_0=0, y_0=1`, with step length 0.1 using Taylor Series method (first order differential equation) Solution:Given `y'=-y, y(0)=1, h=0.1, y(0.2)=?`
Here, `x_0=0,y_0=1,h=0.1,x_n=0.2`
Differentiating successively, we get
Derivative steps
`d/(dx)(-y)`
`=-y'`
Now, `d^2/(dx^2)(-y)=d/(dx)(-y')`
`=-y''`
Now, `d^3/(dx^3)(-y)=d/(dx)(-y'')`
`=-y'''`
`y'=-y`
`y''=-y'`
`y'''=-y''`
`y^(iv)=-y'''`
Now substituting, we get
`y_0'=-y_0=-1`
`y_0''=-y_0'=1`
`y_0'''=-y_0''=-1`
`y_0^(iv)=-y_0'''=1`
Putting these values in Taylor Series, we have
`y_1 = y_0 + hy_0' + h^2/(2!) y_0'' + h^3/(3!) y_0''' + h^4/(4!) y_0^(iv) + ...`
for `n=0,x_0=0,y_0=1`
`=1+0.1*(-1)+(0.1)^2/(2)*(1)+(0.1)^3/(6)*(-1)+(0.1)^4/(24)*(1)+...`
`=1-0.1+0.005+0+0+...`
`=0.9048`
`x_1=x_0+h=0+0.1=0.1`
Now substituting, we get
`y_1'=-y_1=-0.9048`
`y_1''=-y_1'=0.9048`
`y_1'''=-y_1''=-0.9048`
`y_1^(iv)=-y_1'''=0.9048`
Putting these values in Taylor Series, we have
`y_2 = y_1 + hy_1' + h^2/(2!) y_1'' + h^3/(3!) y_1''' + h^4/(4!) y_1^(iv) + ...`
for `n=1,x_1=0.1,y_1=0.9048`
`=0.9048+0.1*(-0.9048)+(0.1)^2/(2)*(0.9048)+(0.1)^3/(6)*(-0.9048)+(0.1)^4/(24)*(0.9048)+...`
`=0.9048-0.0905+0.0045+0+0+...`
`=0.8187`
`x_2=x_1+h=0.1+0.1=0.2`
`:.y(0.2)=0.8187`
| `n` | `x_n` | `y_n` | `y_n'` | `y_n''` | `y_n'''` | `y_n^(iv)` | `x_(n+1)` | `y_(n+1)` |
| 0 | 0 | 1 | -1 | 1 | -1 | 1 | 0.1 | 0.9048 |
| 1 | 0.1 | 0.9048 | -0.9048 | 0.9048 | -0.9048 | 0.9048 | 0.2 | 0.8187 |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then