3. Example-3
Find y(0.1) for `y''=-4z-4y`, `x_0=0, y_0=0, z_0=1`, with step length 0.1 using Runge-Kutta 3 method (2nd order derivative)
Solution: Given `y^('')=-4z-4y, y(0)=0, y'(0)=1, h=0.1, y(0.1)=?`
put `(dy)/(dx)=z` and differentiate w.r.t. x, we obtain `(d^2y)/(dx^2)=(dz)/(dx)`
We have system of equations `(dy)/(dx)=z=f(x,y,z)`
`(dz)/(dx)=-4z-4y=g(x,y,z)`
Third order R-K method `k_1=hf(x_0,y_0,z_0)=(0.1)*f(0,0,1)=(0.1)*(1)=0.1`
`l_1=hg(x_0,y_0,z_0)=(0.1)*g(0,0,1)=(0.1)*(-4)=-0.4`
`k_2=hf(x_0+h/2,y_0+k_1/2,z_0+l_1/2)=(0.1)*f(0.05,0.05,0.8)=(0.1)*(0.8)=0.08`
`l_2=hg(x_0+h/2,y_0+k_1/2,z_0+l_1/2)=(0.1)*g(0.05,0.05,0.8)=(0.1)*(-3.4)=-0.34`
`k_3=hf(x_0+h,y_0+2k_2-k_1,z_0+2l_2-l_1)=(0.1)*f(0.1,0.06,0.72)=(0.1)*(0.72)=0.072`
`l_3=hg(x_0+h,y_0+2k_2-k_1,z_0+2l_2-l_1)=(0.1)*g(0.1,0.06,0.72)=(0.1)*(-3.12)=-0.312`
Now, `y_1=y_0+1/6(k_1+4k_2+k_3)`
`y_1=0+1/6[0.1+4(0.08)+(0.072)]`
`y_1=0.082`
`:.y(0.1)=0.082`
`:.y(0.1)=0.082`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|