Home > Statistical Methods calculators > Exponential Moving Average forecast example

7. Simple Moving Average forecast example ( Enter your problem )
  1. Formula & 3 year Exponential Moving Average forecast Example
  2. 4 year Exponential Moving Average forecast Example
  3. 5 year Exponential Moving Average forecast Example
Other related methods
  1. Simple Moving Average
  2. Weighted Moving Average
  3. Exponential Moving Average
  4. Single Exponential Smoothing
  5. Simple Moving Average forecast
  6. Weighted Moving Average forecast
  7. Exponential Moving Average forecast
  8. Single Exponential Smoothing forecast

2. 4 year Exponential Moving Average forecast Example
(Previous example)
8. Single Exponential Smoothing forecast
(Next method)

3. 5 year Exponential Moving Average forecast Example





1) 5 year Exponential Moving Average forecast
year123456789101112
Sales5.24.95.54.95.25.75.45.85.965.24.8
Calculate 5 year Exponential Moving Average forecast


Solution:
`alpha=2/(n+1)=2/(5+1)=0.3333`

(1)
year
(2)
Sales
(3)
Exponential Smoothing
`(alpha=0.3333)`
15.25.2
24.9`0.3333*5.2+0.6667*5.2=5.2`
35.5`0.3333*4.9+0.6667*5.2=5.1`
44.9`0.3333*5.5+0.6667*5.1=5.2333`
55.2`0.3333*4.9+0.6667*5.2333=5.1222`
65.7`0.3333*5.2+0.6667*5.1222=5.1482`
75.4`0.3333*5.7+0.6667*5.1482=5.3321`
85.8`0.3333*5.4+0.6667*5.3321=5.3547`
95.9`0.3333*5.8+0.6667*5.3547=5.5031`
106`0.3333*5.9+0.6667*5.5031=5.6354`
115.2`0.3333*6+0.6667*5.6354=5.7569`
124.8`0.3333*5.2+0.6667*5.7569=5.5713`
13`0.3333*4.8+0.6667*5.5713=5.3142`


(1)
year
(2)
Sales
(3)
Exponential Smoothing
(4)
Error
(5)
|Error|
(6)
`"Error"^2`
(7)
`|%"Error"|`
15.25.2
24.95.2
35.55.1
44.95.2333
55.25.1222
65.75.1482`5.7-5.1482=0.5518``0.5518``0.3045``9.68%`
75.45.3321`5.4-5.3321=0.0679``0.0679``0.0046``1.26%`
85.85.3547`5.8-5.3547=0.4453``0.4453``0.1983``7.68%`
95.95.5031`5.9-5.5031=0.3969``0.3969``0.1575``6.73%`
1065.6354`6-5.6354=0.3646``0.3646``0.1329``6.08%`
115.25.7569`5.2-5.7569=-0.5569``0.5569``0.3102``10.71%`
124.85.5713`4.8-5.5713=-0.7713``0.7713``0.5949``16.07%`
135.3142Total`3.1547``1.7029``58.2%`


Forecasting errors

1. Mean absolute error (MAE), also called mean absolute deviation (MAD)
MAE`=1/n sum |e_i|=3.1547/7=0.4507`


2. Mean squared error (MSE)
MSE`=1/n sum |e_i^2|=1.7029/7=0.2433`


3. Root mean squared error (RMSE)
RMSE`=sqrt(MSE)=sqrt(0.2433)=0.4932`


4. Mean absolute percentage error (MAPE)
MAPE`=1/n sum |e_i/y_i|=58.2/7=8.31`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. 4 year Exponential Moving Average forecast Example
(Previous example)
8. Single Exponential Smoothing forecast
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.