Home > Statistical Methods calculators > Weighted Moving Average forecast example

6. Weighted Moving Average forecast example ( Enter your problem )
  1. Formula & 3 year Weighted Moving Average forecast Example
  2. 4 year Weighted Moving Average forecast Example
  3. 5 year Weighted Moving Average forecast Example
Other related methods
  1. Simple Moving Average
  2. Weighted Moving Average
  3. Exponential Moving Average
  4. Single Exponential Smoothing
  5. Simple Moving Average forecast
  6. Weighted Moving Average forecast
  7. Exponential Moving Average forecast
  8. Single Exponential Smoothing forecast

1. Formula & 3 year Weighted Moving Average forecast Example
(Previous example)
3. 5 year Weighted Moving Average forecast Example
(Next example)

2. 4 year Weighted Moving Average forecast Example





1) 4 year Weighted Moving Average forecast
year12345678910
Sales20212322252427262830
Calculate 4 year Weighted Moving Average forecast with weight=1,2,2,1


Solution:
The value of table for `x` and `y`

x12345678910
y20212322252427262830

The weights of the 4 years are respectively 1,2,2,1 and their sum is 6
Calculation of 4 year moving averages of the data
(1)
year
(2)
Sales
(3)
4 year weighted moving total
(4)
4 year weighted moving average
`(3)-:6`
(5)
2 item moving total of
column (4)
(6)
4 year centered weighted moving average
`(5)-:2`
120
221
`1xx20+2xx21+2xx23+1xx22=130``130-:6=21.6667`
323`21.6667+22.6667=44.3333``44.3333-:2=22.1667`
`1xx21+2xx23+2xx22+1xx25=136``136-:6=22.6667`
422`22.6667+23.5=46.1667``46.1667-:2=23.0833`
`1xx23+2xx22+2xx25+1xx24=141``141-:6=23.5`
525`23.5+24.5=48``48-:2=24`
`1xx22+2xx25+2xx24+1xx27=147``147-:6=24.5`
624`24.5+25.5=50``50-:2=25`
`1xx25+2xx24+2xx27+1xx26=153``153-:6=25.5`
727`25.5+26.3333=51.8333``51.8333-:2=25.9167`
`1xx24+2xx27+2xx26+1xx28=158``158-:6=26.3333`
826`26.3333+27.5=53.8333``53.8333-:2=26.9167`
`1xx27+2xx26+2xx28+1xx30=165``165-:6=27.5`
928
1030


(1)
year
(2)
Sales
(3)
4 year weighted moving average
(4)
Error
(5)
|Error|
(6)
`"Error"^2`
(7)
`|%"Error"|`
120
221
323
422
52522.1667`25-22.1667=2.8333``2.8333``8.0278``11.33%`
62423.0833`24-23.0833=0.9167``0.9167``0.8403``3.82%`
72724`27-24=3``3``9``11.11%`
82625`26-25=1``1``1``3.85%`
92825.9167`28-25.9167=2.0833``2.0833``4.3403``7.44%`
103026.9167`30-26.9167=3.0833``3.0833``9.5069``10.28%`
110Total`12.9167``32.7153``47.83%`


Forecasting errors

1. Mean absolute error (MAE), also called mean absolute deviation (MAD)
MAE`=1/n sum |e_i|=12.9167/6=2.1528`


2. Mean squared error (MSE)
MSE`=1/n sum |e_i^2|=32.7153/6=5.4525`


3. Root mean squared error (RMSE)
RMSE`=sqrt(MSE)=sqrt(5.4525)=2.3351`


4. Mean absolute percentage error (MAPE)
MAPE`=1/n sum |e_i/y_i|=47.83/6=7.97`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & 3 year Weighted Moving Average forecast Example
(Previous example)
3. 5 year Weighted Moving Average forecast Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.