Home > Statistical Methods calculators > One-way ANOVA example

1. One-way ANOVA method example ( Enter your problem )
  1. Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. One-way ANOVA method
  2. Two-way ANOVA method

1. Example-1
(Previous example)
3. Example-3
(Next example)

2. Example-2





Solve using One-way ANOVA method
ObservationABC
1876
21078
36810
4796
5984
6055
7007


Solution:
`A``B``C`
876
1078
6810
796
984
055
007
`sum A=40``sum B=44``sum C=46`


`A^2``B^2``C^2`
644936
1004964
3664100
498136
816416
02525
0049
`sum A^2=330``sum B^2=332``sum C^2=326`


Data table
Group`A``B``C`Total
N`n_1=5``n_2=6``n_3=7``n=18`
`sum x_i``T_1=sum x_1=40``T_2=sum x_2=44``T_3=sum x_3=46``sum x=130`
`sum x_(i)^2``sum x_1^2=330``sum x_2^2=332``sum x_3^2=326``sum x^2=988`
Mean `bar x_i``bar x_1=8``bar x_2=7.3333``bar x_3=6.5714`Overall `bar x=7.2222`
Std Dev `S_i``S_1=1.5811``S_2=1.3663``S_3=1.9881`


Let k = the number of different samples = 3
`n=n_1+n_2+n_3=5+6+7=18`

Overall `bar x=130/18=7.2222`

`sum x=T_1+T_2+T_3=40+44+46=130 ->(1)`

`(sum x)^2/n=130^2/18=938.8889 ->(2)`

`sum T_i^2/n_i=(40^2/5+44^2/6+46^2/7)=944.9524 ->(3)`

`sum x^2=sum x_(1)^2+sum x_(2)^2+sum x_(3)^2=330+332+326=988 ->(4)`



ANOVA:
Step-1 : sum of squares between samples
`"SSB"= (sum T_i^2/n_i) - (sum x)^2/n = (3)-(2)`

`=944.9524-938.8889`

`=6.0635`

Or
`"SSB"=sum n_j * (bar x_j - bar x)^2`

`=5xx(8-7.2222)^2+6xx(7.3333-7.2222)^2+7xx(6.5714-7.2222)^2`

`=6.0635`

Step-2 : sum of squares within samples
`"SSW"= sum x^2 - (sum T_i^2/n_i) = (4)-(3)`

`=988-944.9524`

`=43.0476`

Step-3 : Total sum of squares
`"SST"="SSB"+"SSW"`

`=6.0635+43.0476`

`=49.1111`

Step-4 : variance between samples
`"MSB"=("SSB")/(k-1)`

`=6.0635/(2)`

`=3.0317`

Step-5 : variance within samples
`"MSW"=("SSW")/(n-k)`

`=43.0476/(18-3)`

`=43.0476/(15)`

`=2.8698`

Step-6 : test statistic F for one way ANOVA test
`F=("MSB")/("MSW")`

`=3.0317/(2.8698)`

`=1.0564`

the degree of freedom between samples
`k-1=2`

Now, degree of freedom within samples
`n-k=18-3=15`

ANOVA table
Source of VariationSums of Squares
SS
Degrees of freedom
DF
Mean Squares
MS
F`p`-value
Between samplesSSB = 6.0635`k-1` = 2MSB = 3.03171.05640.3722
Within samplesSSW = 43.0476`n-k` = 15MSW = 2.8698
TotalSST = 49.1111`n-1` = 17


`H_0` : There is no significant differentiating between samples

`H_1` : There is significant differentiating between samples

`F(2,15)` at `0.05` level of significance

`=3.6823`

As calculated `F=1.0564 < 3.6823`

So, `H_0` is accepted, Hence there is no significant differentiating between samples




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Example-1
(Previous example)
3. Example-3
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.