Home > Statistical Methods calculators > Two-way ANOVA example

2. Two-way ANOVA method example ( Enter your problem )
  1. Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. One-way ANOVA method
  2. Two-way ANOVA method

2. Example-2
(Previous example)

3. Example-3





Solve using Two-way ANOVA method
ObservationABC
11,4,0,713,5,7,159,16,18,13
215,6,10,136,18,9,1514,7,6,13


Solution:
Given problem
Observation`A``B``C`
`1`1, 4, 0, 713, 5, 7, 159, 16, 18, 13
`2`15, 6, 10, 136, 18, 9, 1514, 7, 6, 13


Row and column sums
`A``B``C`Row total `(x_(a))`
`1`124056`108`
`2`444840`132`
Col total `(x_(b))``56``88``96``240`


`sum x^2=1^2 + 4^2 + 0^2 + ... + 7^2 + 6^2 + 13^2=3010 ->(A)`

`(sum x_(b)^2)/(ra)=1/(4*2)(56^2+88^2+96^2)`

`=1/8(3136+7744+9216)`

`=1/8(20096)`

`=2512 ->(B)`

`(sum x_(a)^2)/(rb)=1/(4*3)(108^2+132^2)`

`=1/12(11664+17424)`

`=1/12(29088)`

`=2424 ->(C)`

`(sum sum x_(ab)^2)/r=1/4(12^2+40^2+56^2+44^2+48^2+40^2)`

`=1/4(144+1600+3136+1936+2304+1600)`

`=1/4(10720)`

`=2680 ->(C)`

`(sum x)^2/(rab)=(240)^2/(4*2*3)`

`=57600/24`

`=2400 ->(D)`



Sum of squares total
`SS_T=sum x^2 - (sum x)^2/(n)=(A)-(D)`

`=3010-2400`

`=610`

Sum of squares between rows
`SS_A=(sum x_(a)^2)/(rb) - (sum x)^2/(n)=(C)-(D)`

`=2424-2400`

`=24`

Sum of squares between columns
`SS_B=(sum x_(b)^2)/(ra) - (sum x)^2/(n)=(B)-(D)`

`=2512-2400`

`=112`

Sum of squares between columns
`SS_(AB)=(sum sum x_(ab)^2)/(r) - (sum x)^2/(n) - SSA - SSB = (B)-(D)- SSA - SSB`

`=2680-2400-24-112`

`=144`

Sum of squares Error (residual)
`SS_E=SS_T - SS_A - SS_B - SS_(AB)`

`=610-24-112-144`

`=330`

ANOVA table
Source of VariationSums of Squares
SS
Degrees of freedom
DF
Mean Squares
MS
F`p`-value
A`SS_A = 24``a-1 = 1``MS_R=24/1=24``24/18.3333=1.3091``0.2675`
B`SS_B = 112``b-1 = 2``MS_C=112/2=56``56/18.3333=3.0545``0.0721`
AB`SS_(AB) = 144``(a-1)(b-1) = 2``MS_(AB)=144/2=72``72/18.3333=3.9273``0.0384`
Error (residual)`SS_E = 330``rab-ab = 18``MS_E=330/18=18.3333`
Total`SS_T = 610``rab-1 = 23`


Conclusion:
1. F for between columns
`F(1,2)` at `0.05` level of significance

`=4.4139`

As calculated `F_R=1.3091 < 4.4139`

So, `H_0` is accepted, Hence there is no significant differentiating between rows

2. F for between columns
`F(2,2)` at `0.05` level of significance

`=3.5546`

As calculated `F_C=3.0545 < 3.5546`

So, `H_0` is accepted, Hence there is no significant differentiating between columns


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Previous example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.